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Abstract—5G millimeter-wave (mmWave) communications are
essential for enabling ultra-high-speed, low-latency wireless con-
nectivity to support data-intensive applications. However, the
highly directional nature and sensitivity of mmWave signals
make them particularly susceptible to jamming attacks. As such,
securing SG mmWave communication systems against jamming
attacks is critical for ensuring reliable wireless connectivity in
mission-critical applications. In this paper, we propose an online
Bayesian Optimization (BayOpt) framework for joint analog and
digital beamforming optimization at a mmWave communication
device, aimed at maximizing its packet decoding rate under a con-
stant jamming attack. By modeling the optimization objective as a
black-box function and leveraging online learning to guide beam
search, the BayOpt framework efficiently identifies near-optimal
beam configurations in both the analog and digital domains while
not requiring any knowledge of the jamming strategy or channel
conditions. We have implemented the proposed anti-jamming
solution on a 28 GHz mmWave testbed and conducted extensive
evaluations across four distinct jamming scenarios. Over-the-
air experiments demonstrate the effectiveness of the BayOpt
framework in suppressing jamming interference. Notably, in a
scenario where the jamming signal is 10 dB stronger than the
desired signal, the BayOpt-enabled mmWave receiver achieves
73% of the throughput observed in a jamming-free environment.

Index Terms—Anti-jamming, mmWave communication, beam-
forming, Bayesian optimization, online learning

I. INTRODUCTION

5G millimeter-wave (mmWave) technology is crucial for
enabling high-speed, low-latency connectivity that supports
a wide range of data-intensive applications, including smart
cities, autonomous vehicles, and augmented reality. However,
the wide applications of 5G mmWave also bring substantial
risks. As mmWave links play a crucial role in 5G and beyond,
serving as both access links and backbone of cellular network
infrastructures, they become attractive targets for malicious ac-
tors seeking to disrupt, manipulate, or exploit these systems for
their own benefit. Among the myriad threats facing mmWave
links, jamming attacks are a significant concern, undermining
the reliability and availability of wireless connections and
resulting in widespread denial-of-service consequences for
applications such as remote surgery, autonomous driving, and
other mission-critical applications.

The work of P. Yan, B. Zhang, S. Zhang, and H. Zeng was supported by
NSF Grants ECCS-2434001, CNS-2100112 (CAREER), and CNS-2312448.
The work of K. Zeng was supported by NSF CNS-2318796 and IUCRC
Program under Grant No. 2413168, and the Army Research Office under
Grant No. W911NF-21-1-0187.

To secure mmWave links against jamming attacks, anti-
jamming methods have been proposed in increasingly so-
phisticated forms, aimed at mitigating or circumventing radio
interference caused by unknown sources. Examples of anti-
jamming techniques include frequency hopping spread spec-
trum (FHSS) [1], direct sequence spread spectrum (DSSS) [2],
adaptive modulation and coding (AMC) [3], beamforming and
directional antennas [4], cognitive radio (CR) [5], jamming
detection and nulling [6], game theory-based approaches [7],
and other physical-layer security techniques. Despite the large
volume of anti-jamming work in the literature, most existing
methods were designed for low-frequency (sub-6 GHz) sys-
tems and lack experimental validations. The progress in the
design of anti-jamming mmWave communication schemes re-
mains very limited [8]. Pioneering works (e.g., [9]-[12]) have
studied anti-jamming methods to secure mmWave communi-
cations. However, existing work focuses mainly on analytical
studies based on ideal channel and system models, providing
no experimental validation in realistic scenarios. To the best of
our knowledge, the experimental validation of anti-jamming
methods for mmWave communication systems has not been
explored.

In this paper, we present a beamforming design for a
mmWave communication receiver, enabling it to decode data
packets in the presence of strong in-band jamming signals.
We assume that the receiver has no prior knowledge of
the jamming signal—such as its waveform, frame format,
or spectral characteristics—and must rely solely on its local
operations to suppress the interference and recover the desired
signal. The receiver is assumed to be equipped with multiple
radio frequency (RF) chains, each connected to a phased-array
antenna, enabling it to perform both analog and digital beam-
forming in the spatial domain. The core of our design is an
online Bayesian Optimization (BayOpt) framework for beam
search at the mmWave receiver. By treating the optimization
objective as a blackbox function and applying online learning
to guide the beam search process, the BayOpt framework
efficiently identifies near-optimal beam configurations in both
analog and digital domains, without requiring any knowledge
of the jamming strategy or channel conditions.

To decode data packets in the presence of jamming signals,
we face two key challenges. The first challenge lies in the de-
sign of digital beamforming (DBF) vectors, which corresponds
to signal detection and channel equalization. While DBF



has been extensively studied, the uniqueness of our scenario
is that the mmWave receiver lacks any knowledge of the
jamming channel state information (CSI). Without CSI, it is
unclear how to effectively decode data packets under jamming
interference. The second challenge concerns the configuration
of analog beamforming (ABF), specifically the selection of a
beam from a predefined beambook to optimize communication
performance. In practice, the beambook often contains a large
number of beam candidates. An exhaustive search through
all beam options would be time-consuming and inefficient.
Thus, fast beam search algorithms are necessary to identify
the optimal beam. Although the literature offers many ABF
methods [13]-[16], none address scenarios involving jamming.
The problem of efficiently identifying the best beam from a
beambook in the presence of jamming signals remains largely
unexplored.

The proposed BayOpt framework addresses these two
challenges by jointly and iteratively optimizing both analog
beamforming and digital beamforming. BayOpt is adopted for
two main reasons: (i) The relationship between a selected
beam and its achievable data rate under jamming conditions
is complex and unknown; and (ii) BayOpt has been shown
to be effective for solving optimization problems where the
objective function and constraints are unknown and expensive
to evaluate. The core idea of the BayOpt framework is to
guide beam search using posterior probabilities derived from
previously evaluated beams. As more beams are evaluated, the
framework gains increasingly accurate information to inform
future selections. Compared to exhaustive search, BayOpt is
remarkably efficient at identifying near-optimal beams within
a given airtime budget.

As a key component of the BayOpt framework, we design
a modified minimum mean square error (M-MMSE) detector
for DBF. The rationale behind its design is as follows: While
the mmWave receiver lacks knowledge about the jamming
signals, it does possess knowledge of the desired signal,
including its bandwidth, OFDM parameters, and demodulation
reference signals (DMRS). Unlike traditional MIMO-based
detection methods that estimate channels using DMRS and
then apply the estimated channels for payload demodulation,
our M-MMSE method bypasses channel estimation. Instead,
it directly constructs DBF vectors from the DMRS within a
signal frame. This approach not only eliminates the need for
intermediate channel estimation but also yields DBF vectors
that are effective in mitigating jamming and implicitly equalize
the channel for successful signal demodulation.

We have built a prototype of the anti-jamming mmWave
receiver device by leveraging the dual polarization (horizontal
and vertical) capabilities of a phased-array antenna. The an-
tenna consists of a 4x4 patch element array for analog beam-
forming and supports two independent data streams for digital
beamforming. We evaluated the receiver in a 28 GHz mmWave
communication system under various in-band jamming sce-
narios, aiming to assess its packet decoding rate. Extensive
experimental results show that the proposed mmWave receiver
achieves, on average, 73% of the throughput compared to
jamming-free conditions. A video demonstration of real-time
mmWave video streaming in the presence of strong jamming

TABLE I: Anti-jamming strategies in the literature.

Type References Tect Key ideas
Channel hopping
Jamming [1], [2] & spreading FHSS, DSSS, etc.
avoidance [4] Directional antenna | Use extra spatial info via directional antenna
[19], [20] Machine learning | Classify jamming signals for avoidance
Adaptive Beam switching, beam management,
[21], [22] X L
. beamforming and prediction
Jamming .
adaptation [3] Adaptive Keep orthogonality to jamming signal
P i modulation P S ytoJ S Sigl
D i . . .
[23]-[25] ynamic resource Adaptive allocation of power, rate, antennas
allocation
[7], [26], [27] Game theory Use game model to compete with jammer
[10], [28] MIMO Project signal .omo §ubsp_ace
orthogonal to jamming signal
]z?lrlmlnng [291-131] Network coding Modul.amm coding, s.pectrum
mitigation spreading, phase-coding
[51. [32] Cognitive radio Cooperative Rx to estimate jamming channel
(111, [33], [34] Beamforming ABF/DBF( and.hybnf:l beamforming
using spatial dimension
Our work Analog & digital | g, (5 ABF and M-MMSE DBF
beamforming

signals is available in [17].
The main contributions of this paper are as follows:

e« We design an online Bayesian Optimization framework
for joint analog and digital beamforming in a mmWave
communication device, enabling robust data decoding
under jamming attacks.

« We develop a DBF scheme tailored to the BayOpt frame-
work that effectively mitigates jamming without requiring
knowledge of the jamming channel.

o To the best of our knowledge, we are the first to evaluate
the proposed BayOpt framework on a 5G mmWave
testbed in realistic settings. Extensive experiments con-
firm its resilience against jamming attacks.

Conference Version: Part of this paper appeared in IEEE
INFOCOM 2023 [18], but it differs significantly from the
conference version. The conference paper addresses up-
link MU-MIMO mmWave communications in WLAN us-
ing Bayesian optimization, while this work focuses on anti-
jamming mmWave communication solutions. Experimentally,
the conference paper uses planar antennas without beam
steering, whereas this work employs phased-array antennas
with real-time beam steering.

Acronyms—ABF: Analog Beamforming; AWGN: Additive
White Gaussian Noise; BER: Bit Error Rate; BS: Base Sta-
tion; CDF: Cumulative Distribution Function; CSI: Channel
State Information; DBF: Digital Beamforming; DL: Down-
link; LoS: Line-of-Sight; MIMO: Multiple-Input Multiple-
Output; mmWave: Millimeter Wave; MMSE: Minimum
Mean Square Error; MU-MIMO: Multi-User Multiple-Input
Multiple-Output; NLoS: Non-Line-of-Sight; O-RAN: Open
Radio Access Network; RF: Radio Frequency; SDR: Software-
Defined Radio; SNR: Signal-to-Noise Ratio; UL: Uplink.

II. RELATED WORK

Anti-jamming mmWave communication has attracted grow-
ing research interest in recent years. Existing approaches can
be broadly classified into three main categories: jamming
avoidance, jamming adaptation, and jamming mitigation, as
summarized in Table 1.

Jamming Avoidance: Channel hopping approaches avoid
jamming attacks in the frequency domain, requiring large spec-
trum bands for collision avoidance [1], [2]. These approaches
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Fig. 1: Threat model.

appear to be inefficient due to the spectrum scarcity in real-
world systems. Moreover, these approaches need to scan all
possible channels to identify a “usable” one, incurring airtime
overhead and thus degrading communication efficiency. [4]
presents a directional-antenna-based approach for jamming
avoidance. However, this approach requires specialized anten-
nas and cannot work in the case where jamming comes from
all directions. Recently, machine learning has been studied for
jamming detection and avoidance [19], [20]. Our work differs
from the above work, as it aims to mitigate jamming signals,
rather than avoiding them.

Jamming Adaptation: Adaptive beamforming is a repre-
sentative approach for jamming adaptation through dynamic
beam management. This approach requires sophisticated al-
gorithms for effective beam management [21] and fast beam
switching [22]. Another popular approach for jamming adap-
tation is dynamic resource allocation [24], [25]. This approach
is a centralized resource control mechanism to handle various
jamming attacks. Despite its potential for adaptability, this
approach tends to introduce additional layers of control over-
head and raises concerns regarding the equitable distribution
of resources. [7], [26], [27] proposed game theory based
frameworks that employ reinforcement learning to develop
anti-jamming strategies. This approach requires a large amount
of datasets for model training, which poses a grand challenge
in data acquisition.

Jamming Mitigation: A well-known approach in this class
is MIMO-based jamming mitigation, which uses multiple
antennas to project received signals onto a subspace orthogonal
to the jamming. [10] is a representative work on single-
user uplink, where the jammer has a single antenna and
the legitimate nodes (base station and user) have antenna
arrays. It employs a pilot-hopping protocol within a predefined
codebook to guarantee an unused orthogonal pilot sequence.
Projecting onto this sequence space allows the base station
to estimate both the jammer’s and user’s channels, enabling
reliable decoding under jamming. [31] proposes a physical-
layer network coding (PNC) scheme to secure multi-hop
communications against jamming. [33] proposed a beamform-
ing approach that leverages spatial information to suppress
jamming. The scenario involves a multi-antenna transmitter
and receiver, and a single-antenna jammer. The optimization
proceeds in two phases: (i) relax the analog beamforming
constraint to jointly optimize the product of analog and digital
beamforming vectors, and (ii) decompose the product to obtain
the individual analog and digital beamforming vectors. [35]
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Fig. 2: Tllustration of one 5G NR frame structure.

proposed a deep learning—based jamming mitigation approach
for RIS-NOMA uplink in 5G URLLC applications.

This work falls in the class of jamming mitigation. It differs
from the prior work [33], [35] in the following aspects. First,
our work focuses on the anti-jamming design for 5G com-
munications, while prior work did not consider the realistic
setting (e.g., frame structure) of 5G systems. Second, our work
focuses on solution design and experimental validation, while
prior work has never implemented and evaluated their anti-
jamming solutions in real systems. Instead, prior work relies
on simulation or numerical results for evaluation.

III. PROBLEM DESCRIPTION

Consider a mmWave communication network as shown
in Figure 1, where a transmitter sends signal frames (data
packets) to the receiver in the presence of jamming signals
from unknown sources. Both transmitter and receiver are
equipped with one or multiple phased-array antennas,' allow-
ing them to perform both analog and digital beamformings
for signal process. The attacker launches in-band jamming
signal emission, which may be strong and time-varying. For
simplicity, we assume that the attack is a constant jamming
throughout the paper. Other types of jamming (e.g., reactive
jamming, cognitive jamming, and smart jamming) are out of
the scope of this work. In the presence of constant jamming
attacks, an existing mmWave receiver is incapable of decoding
its data packets, resulting in a communication disruption. Our
objective is to design a new mmWave receiver that secures
mmWave communications against constant in-band jamming
attacks.

A. Problem Formulation

5G Frame Structure: In 5G new radio (NR) communica-
tions, the signal transmission is structured in frames as shown
in Figure 2. A 5G NR frame encompasses a sequence of
subframes of the same length. Each subframe comprises an
array of OFDM symbols, expanding to its frequency band over
subcarriers. Combining the temporal (over OFDM symbols)
and spectral (over OFDM subcarriers) domains, the resource
can be formatted to a two-dimensional grid, as shown in

'As we will show in the implementation section, when the mmWave
device has a single phased-array antenna, it can support two data streams for
digital beamforming by utilizing the antenna’s dual (horizontal and vertical)
polarization.



Figure 2. Each small box is called a resource element (RE).
A set of adjacent REs are grouped (e.g., 7 OFDM symbols by
12 OFDM subcarriers) and called resource block (RB), which
is the basic unit for data transmission and reception. Over the
resource grid, a subset of REs are selected for Demodulation
Reference Signal (DMRS), which is used for a receiver to
estimate channel and demodulate signal. To the end, we will
show that these DMRS REs will play a critical role in jamming
mitigation at the receiver.

Analog Beamforming (ABF): Due to the high frequency
of mmWave, signal power attenuates rapidly over its travel
distance. ABF is used to steer radio energy to a specific
direction, such that the communication range can be extended
while maintaining a low cost and low power of RF hard-
ware. In practice, a phased-array antenna has multiple patch
elements. A vector of weights, each of which is a complex
number corresponding to the amplitude amplifying factor and
phase shifter, is used to steer the beam direction in both
horizontal and vertical planes. This weight vector is called
ABF vector. In real systems, the ABF vectors are typically
predefined, each corresponding to a beam direction. With the
predefined beambook, ABF boils down to beam selection,
namely selecting the best beam in a predefined beambook to
optimize a given objective (e.g., maximizing throughput). In
this work, we focus on the fast beam selection from a given
beambook, rather than the design of beamforming weights.

Referring to the threat model in Figure 1, we assume there
is a single transmitter and (N — 1) jammers. Denote s as
the signal from the transmitter and [z2,z3,...,2n] as the
jamming signals. Denote H, as the over-the-air channels
from transmitter/jammer to receiver. Denote d; as the ABF
vector at the transmitter and @,, 2 < n < N, as the
ABF vector at the jammer. Denote M as the number of
receiver’s antennas. Denote B = {51,52, e ,53} as the set
of predefined beambook for ABF. Denote 6= [51, bo,....b M]
as the aggregated ABF at the receiver, where I;m € B for
1 < m < M. Denote 5m € g as the ABF vector for the mth

antenna at the receiver. Then, we have:

N
n=2
N————

jamming

signal

where w,, is the noise at receiver’s mth antenna. We note
that the receiver has no knowledge of the jammer, including
(i) the over-the-air jamming channel ﬁn, 1 <n <N, and (i)
the jamming beamforming vector d@,, 1 < n < N. Therefore,
the receiver design must be carried out without either of these
pieces of information.

Digital Beamforming (DBF): When a mmWave device
has two or more digital chains, DBF can be applied to the
baseband. In our work, the DBF at receiver is exploited for two
purposes: jamming mitigation and signal detection. Denote p’
as the DBF vector. Then, the DBF operation can be written
as:

2

where § is the estimated version of original signal s and i =

§=7"7,

(Y1, Y2, - - 7yM]T'

Objective Function: We assume that the ABF and DBF at
the transmitter and jammer are given. We focus on the design
of ABF and DBF at the receiver. We define the objective
function as the error vector magnitude (EVM) at the re-
ceiver because EVM can relect reliability and performance of
the entire communication system. Mathematically, we define:

f (é’7 7)) = E%ﬁ;fg'ﬁ]. Then, based on Equations (1) and (2), the

beamforming optimization problem can be written as:
. = Ells _ 32
[9*,]7*] = arg mlnf(e,ﬁ) = argmjn(w)' (3)
S

JeB,p 0eB,p

B. Challenges

Solving the optimization problem in (3) is challenging for
the following reasons.

Unknown Jamming Waveform: The receiver has no
knowledge about jamming signals [z, 23, ..., zx]. The jam-
ming signal can be any waveform, such as OFDM, CDMA,
and noise. Additionally, the spectrum of jamming signals may
be partially or fully overlapping with the spectrum of the
desired signal. The unknown structure of jamming signals calls
for a blind jamming mitigation strategy for signal detection.

Unknown Jamming Channels: Due to the lack of knowl-
edge regarding jamming signals, it is hard to obtain the
channel knowledge between the jammer and the receiver, i.e.,
ﬁn for 2 < n < N. Additionally, receiver does not have
knowledge about the ABF vectors at jammer. The lack of
channel knowledge makes it challenging to design efficient
ABF and DBF vectors at receiver.

Coupling of ABF and DBF: It is easy to see that the ABF
design over the receiver’s multiple antennas is tightly coupled
with each other. Optimizing ABF for individual antennas does
not lead to an optimal or near-optimal solution. In addition,
the ABF and DBF are coupled as well. This calls for a joint
ABF and DBF design at the receiver.

IV. DESIGN OVERVIEW

In this section, we propose a BayOpt framework for the
mmWave device’s joint ABF and DBF optimization. BayOpt
is an online learning framework. It is a model-free, end-to-end
solution requiring no knowledge about antenna and channel
models, such as jammer’s channel H,, and beamforming vector
a, in Eqn (1).

A. Our Approach

Online Learning Framework: ABF is to find the optimal
or near-optimal beam index in a predefined beambook so as to
maximize the data rate (equivalently, minimizing EVM) at the
mmWave receiver device. In practice, the beambook is typi-
cally large. For instance, if the predefined beambook has 60
horizon angles and 60 elevation angles. Then, the beambook
has 3600 beam candidates. On one hand, an exhaustive search
is too costly for practical use. It entails a large airtime overhead
and thus compromises communication efficiency. On the other
hand, while the literature has efficient beam search strategies
(e.g., compressive sensing [36], [37]), most of them aim to
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Fig. 3: The high-level system diagram.

maximize the signal strength of each individual antenna. It is
not suited for the case where jamming presents because they
cannot differentiate jamming and useful signals.

To tackle this problem, we employ a BayOpt scheme for
joint beam search. BayOpt has been proved to be an effective
technique for solving sequential optimization problems where
the objective function is complex (treated as a black-box), the
(sub-)gradient is unknown, and the evaluation is expensive
[38]. To illustrate the idea behind BayOpt, let us consider
the beams in a beambook [f1,6s, ..., 6], among which we
intend to find a beam to minimize the objective function f (5)
Suppose that we have measured two beams, say 510 and 51000,
and found that f(glo) =5 and f(§1ooo) = 0.1. Then, in the
next iteration, we should select a beam in the neighborhood of
91000 to evaluate, because the global minimum 1s more likely
sitting in the neighborhood of 91000 compared to 910 Through
a principled strategy, BayOpt guides the process of joint beam
search based on posterior probability.

Adaptive Digital Beamforming (DBF): DBF plays a cru-
cial role in jamming mitigation. Unlike conventional MIMO-
based signal detection, which mitigates inter-user interference
to recover intended signal streams, DBF in this scenario faces
the challenge of operating without CSI. Without CSI, existing
MIMO detectors such as zero-forcing or MMSE cannot be
applied. To overcome this challenge, we design a modified
MMSE (M-MMSE) DBF scheme to mitigate unknown jam-
ming signals for useful signal decoding.

B. System Diagram

Figure 3 shows the system diagram for our proposed anti-
jamming scheme. The Rx measures the performance of a
sequence of analog beams [51, O, ... 0, ..., §T], where ¢ is
the iteration index and 7T is the predefined maximum number
of iterations allowed (e.g., T' = 30). In the end of T iterations,
the mmWave Rx device chooses the beam that yields the best
performance (i.e., yielding the minimum EVM value). In each
iteration ¢, the operations include the following three steps:

e Step 1: The Rx selects a beam 9_; for evaluation in the
current iteration (i.e., iteration ¢) based on the poste-
rior probability derived from the past evaluations, i.e.,
(0, f(8,)) for 1 < ' < t. Our method of selecting 6
from the beambook based on the knowledge generated
from prior evaluations is presented in Section V.

o Step 2: After choosing the analog beam 6, the Rx
calculates its DBF vectors p for each resource block

in the OFDM frame. Using these DBF vectors (a.k.a.,
signal detection filters), the Rx starts to decode the signal
frames from the Tx in the presence of jamming signals.
Our method of designing DBF vectors is presented in
Section VI.

o Step 3: Rx measures the EVM of decoded signals. By
doing so, it obtains f(f;). Then, (63, f(6;)) is added to
the dataset and will be used to guide the future beam
search.

V. A BAYESIAN OPTIMIZATION FRAMEWORK

In this section, we present the BayOpt design to find a near-
optimal beam 6 from a given beambook for the Rx. The design
of digital beamforming vector p will be presented in the next
section.

A. Why Bayesian Optimization?

The objective is to solve the optimization problem
argmin f (), where § € B. However, f(0) is a complex
function and cannot be solved analytically. It has the following
features.

o f(6) has a complex structure: Consider the ABF problem
at an anti-jamming Rx. Denote 0 as a beam direction from
the beambook. Let f(6) be the measured EVM at the
Rx. Figure 4 shows an example of f (5) obtained through
exhaustive beam search on our mmWave testbed in the
presence of jamming signals®. It is evident that f (5) is
an irregular non-convex function. It is nontrivial, if even
possible, to solve it analytically.

o f (5) is unknown: The presence of time-varying jamming
signals, makes it extremely hard to model f(6).

o Evaluating f(0) is costly: To evaluate f(0) for a given 0,
the Rx needs to physically set up the beam pattern and
measure the resultant signal quality. This process incurs
non-negligible airtime overhead.

Fortunately, BayOpt is an effective technique to optimize

a function that is unknown yet expensive to evaluate [38].
It makes use of the laws of probability to combine prior
belief with observed data to compute posterior distribution of
the objective function. Therefore, we will design a BayOpt
framework for analog beam search.

B. A Bayesian Optimization Framework

To perform BayOpt, one needs to address two problems:
1) finding a statistical process to model the function being
optimized, and ii) selecting an acquisition function as a
surrogate approximation to guide the search in each iteration.
In what follows, we address these two problems in order.

Gaussian Process Regression (GPR): We model the itera-
tive beam search problem as a Gaussian process. The reasons
are as follows:

« Beam search problem involves complex, non-linear re-
lationship. GPR allows flexibility in choosing kernel
functions. Different kernels can capture different types

2The detailed experimental setup is presented in Section VIII-A.



(a) Measured EVM vs.
vertical beams.

(b) Measured EVM vs.
horizontal beams.
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(c) Measured EVM vs.
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Fig. 4: Measured EVM values at a mmWave receiver when it demodulates signals in the presence of jamming signals. The
x-axis and y-axis labels represent the beam index.

of relationship, adapting to the different characteristics
of the beam search problem.

« GPR provides not only predictions but also estimates of
uncertainty with these predictions. It can guide beam
search by indicating the variety due to environmental
conditions.

« Beam search problems often involve sparse data points,
which limits direct measurements or simulations. While
GPR can effectively interpolate between sparse data
points, providing reliable predictions with a small number
of observation.

In the tth iteration, the Rx has observed ¢ — 1 beams.
Denote ® = {0:}:;% as the set of beams that the Rx has
already observed. Denote f(©) = {f(6;) {1 as the objective
function values of those observed beams. We treat f(@®) as a
multi-variate Gaussian distribution, with 1(®) as its mean and
k(©®, ®) as its covariance kernel. Here, (@) is a (t—1) x 1
vector, while k(©, ©) is a (t—1)x (t—1) matrix. Let § be an
arbitrary beam in the beambook. Then, per the definition of
Gaussian process, the joint distribution of the function values
corresponding to g and © should satisfy:

Jol-~ (&) Lae tedl) w

where p(-) and k(+, -) should be understood as an element-wise
operational function. There are various definitions for Gaus-
sian kernel, such as Matérn kernel, exponentiated quadratic
kernel, and radial basis function kernel [39]. In our exper-
iments, we choose radial basis function kernel, k(é;,é;) =
exp(—rizﬂe_; — 0;]?), where o is a hyper-parameter that
governs the kernel width. In our experiments, we let o = 1.

The posterior distribution on the arbitrary beam g can be
calculated through standard Bayesian rules. Specifically, the
distribution of f(6) can be modeled as:

p(£(0)0.0,£(®)) = N (@),

—

f(0) ~

—

2(0), )

where

u(0) = k(0,©)k(©,0)7 f(O), (6)

2(6) = k(0,0) — k(0,0)k(©,0) 'k(©,0). (1)

Acquisition Function: There are different acquisition func-
tions available for BayOpt problems such as Probability of
Improvement (Pol), Expected Improvement (EI), and Gaussian
process Upper Confidence Bound (GP-UCB) [39]. We choose
EI for two reasons: i) compared to Pol, it has been shown to
be better-behaved; and ii) unlike GP-UCB, it does not involve
tuning parameters [40]. The acquisition function can be written
as:

EI(0) = E[max(f(0) — f(67),0)], ®)

where 67 is the best beam found so far. Under the Gaussian
process model, it can be analytically written as follows:

EI(9) = (u(f) — f(8%) — £) CDF(2) + £(8) pd£(2), (9)

where Z = %({r)_f, CDF(:) and pdf(-) are the cu-
mulative distribution function and the probability density
function of standard normal distribution, respectively, and &
is a parameter that determines the amount of exploration
during the optimization. A large value of ¢ leads to more
exploration, while a small value leads to more exploitation.
In our experiments, we empirically set & to 0.1.

Beam Selection: Then, in the ¢th iteration, the beam
selected for evaluation is obtained by solving the following
problem:

0, = arg max EI(),
feB\©

(10)

where B is the set of all predefined beams and © is the set
of beams that have been evaluated so far. It is worth noting
that (10) is easy to solve because (9) is a simple, disciplined
function.

C. Practical Considerations

There are two challenges associated with the above BayOpt
framework when it is applied to beam search. In the following,
we first point out the challenges and then present our solutions.

Limited Number of Evaluations: MmWave systems have
a fixed airtime budget for beam search/training, which deter-



mines the maximum number of evaluations/iterations that can
be performed before data transmission. In practice, given the
limited airtime budget for beam search, it may not be able
to find the optimal beam for data transmission. Therefore, the
beam search problem is further constrained by the number of
evaluations. To address this challenge, we propose a recenter-
and-shrink (RaS) scheme for the Gaussian process regression.
This scheme was inspired by [41]. The basic idea is that, when
approaching the evaluation budget, we recenter the search
space to the current optimal beam and shrink the search space.
Doing so increases the probability of finding a better beam
when we reach the evaluation budget. Following this idea, we
modify the acquisition function in (10) to:

0, = arg max EI(0) (1)
feB\©
_x T if 1 <t<T/2
s.t. O € =3 i] ¢ Lot /
05— % 0+ %) WT2<I<T

where t is the iteration/evaluation index, 71" is the maximum

number of evaluations, 67 = [0;-]_, is the best beam found

so far, and ¢, is the reduced search range. Empirically, we set
3_ ¢

¢t = (5 — )7 in our experiments.

Cubic Computational Complexity: The computational
complexity of Gaussian process regression is cubic to the
number of data samples, i.e., (’)(t3), where ¢ is the number
of evaluations that have been performed. Rank-1 updates are
typically used to compute matrix inverse in a more efficient
manner, i.e., O(t?). Clearly, the computation rapidly increases
as the evaluation procedure evolves. To overcome the compu-
tation challenge of Gaussian process, a wealth of sparse ap-
proximations have been recently suggested, such as the subset
of data (SoD) approximation, the subset of regressors (SoR)
approximation, the deterministic training conditional (DTC)
approximation, and partially independent training conditional
(PITC) approximation [42]. In these methods, a subset of
the latent variables are treated exactly while the remaining
variables are treated approximately to reduce the computation.
Here, we employ the SoR approximation for the beam search
as it demonstrates a good tradeoff between performance and
computation (see Tables 8.1 & 8.2 in [42]).

Denote ® as the subset of training data samples that
are selected for exact regression, where ® C ©. Per [42],
the Gaussian process regression can be characterized by the
approximate mean and covariance as follows:

w(0) = o 2k(0,2)Q ' k(®,0)f(©),
S(0) = k(0, ®)Q ' k(®, 0),

where Q = 07 2k(®, ©)k(O, ®) + k(®, ).

A question to ask is how to select the active data samples
for ®. Empirically, we define an integer number 7 € Z which
is smaller than ¢t. We choose the 7 beams in @ that are closest
to §* as the active samples for ®. Denote g(0) £ |6+ — ]2
as the metric for . Based on this metric, we sort the elements
in ® in a non-decreasing order and denote the resulting vector
as O,y = [551,552, _ ,gst]. Then, we let:

® = [55170327"’ ,95 ]

T

(12)
13)

(14)

Algorithm 1 Bayesian optimization for analog beam search

1: Required: 7": the budgeted number of evaluations.

2: Output: A beam g* in the predefined beambook B for
data packet reception at the Rx

3: Initialization © = [0].

4: fort=1,2,---,T do

5: Calculate @ using (14)

6: Calculate 1(f) using (12) and (6) using (13)

7: Construct the surrogate function EI() using (9)

8 Find the next beam direction é; by solving (11)

9:  Add f; to ©

10: end for

11: return % = arg ming, ¢, f(g)

With the approximation in (12)-(14), the computational
complexity of Gaussian process regression in the tth iteration
decreases to O(72t). More importantly, the complexity scales
linearly (rather than cubically) with the number of iterations.

We present the proposed BayOpt algorithm in Alg. 1. In a
nutshell, it is a non-parametric online learning algorithm that
guides the beam search using the posterior probability of those
data samples that have been evaluated so far.

Convergence: By modeling the beam—throughput relation-
ship with Gaussian Process Regression, our BayOpt method
predicts both the expected performance and the uncertainty
of unexplored beams. This enables the acquisition function to
balance exploration of new beam directions with exploitation
of promising regions, rapidly narrowing the search to high-
performing areas without the need for exhaustive testing. Our
practical enhancements, such as the recenter-and-shrink strat-
egy, which focuses the search space as the iteration budget is
consumed, and the subset-of-regressors approximation, which
reduces the computational complexity of Gaussian process
regression, further accelerate convergence. As we will show in
our experiments, the proposed approach attains near-optimal
beam configurations in only a small fraction of the time
required by exhaustive search.

VI. DIGITAL BEAMFORMING FOR JAMMING MITIGATION

In this section, we focus on the design of DBF vectors, i.e.,
P = [p1,P2,--.,DK], where K is the number of subcarriers
in the OFDM modulation and 7, € CM*! with M being
the number of antennas on the Rx. In what follows, we first
review classic MMSE MIMO detector and then show that
a modification of the classic MMSE MIMO detector can
eliminate the need for CSI. More importantly, the modified
MMSE MIMO detector is capable of decoding useful signals
in the presence of jamming signals.

A. Review of Classic MMSE MIMO Detector

Consider an MIMO transmission from an /N-antenna Tx to
an M-antenna Rx. Suppose that N < M. Then, the signal
transfer model in the digital domain (on a single subcarrier)
can be written as:

7 =Hz + 1, (15)



where 7 € CM*1 is the received digital baseband signal vector
at the Rx, & = [r1,22,...,zy] " is the transmit signal vector,
where x,, is the signal carried by the nth stream, @ € CM*1
is the noise vector, and H = [Hp,pli<m<M,i<n<nN € CMxN
is the compound channel between the Tx and the Rx.

To decode the N data packets, the Rx can first estimate
the compound channel using the reference signals and then
construct the MMSE MIMO detector as follows:

2
+ 28,

2
0

P = H'(HH" (16)

where I is an identity matrix of proper dimension, o2 is
signal power, and o2, is noise power. After computing MMSE
QGtector, the RxA can perform MIMO detection as follows:
Z = Py, where & is an estimated copy of Z. It is then sent to
the downstream pipeline for signal demodulation.

This decoding method cannot work for a receiver in the
presence of jamming signals, because it does not have the
channel knowledge, i.e., H in Equation (16). In the following,
we present a modified MMSE detector for anti-jamming signal
detection.

B. Modified MMSE MIMO Detector

In the case of anti-jamming communications, the received
signal vector (on a single subcarrier in an OFDM symbol) can
be written as follows.

Y1 Hyy Hyp ... Hin|| s wy
R Y2 Hyy  Hoo ... Hon || 22 Wa
y=1:1=1: C : 3N Bl B
YMm Hyri Hpyp ... Hyn||2n wr
(17

where s is the desired signal and z,, n = 2,3,..., N, is the
jamming signal. In total, there are (N — 1) jamming signal
streams. w,, is the noise received on the mth antenna at the
Rx. For simplicity, we denote & = [s, zo,...,2n]' as the
signal vector on the Tx/Jx side.

It can be clearly seen that the computation of MMSE
detector in (16) needs channel matrix H. In the presence
of jamming signals, the Rx will not be able to estimate the
channel matrix using the DMRS embedded in the frame,
posing a grand challenge in signal detection. To address this
challenge, we modify the MMSE detector in (16). It turns out
that the modified MMSE detector does not need CSI (channel
matrix). More notably, it is capable of decoding the desired
signal in the presence of unknown jamming signals.

Denote F{-} as an operator that returns the first row of
a matrix or the first element of a vector. Denote 5 as the
estimate of original signal s. Recall that z = Py is signal
detection operation in the classic MMSE detection. Per the
classic MMSE detection, we have

§ = F{i} = F{Py} = F{P}y. (18)

Denote R, as the correlation matrix of 7, ie., R, =
E[#Z71]. Denote R, as the correlation matrix of 0, i.e.,
R, = E[wwH]. Per (16), we have

F{P} = F{H"(HH" + %1)*1}

x
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5. R={@1). (8 1), (12,1),
5" (3,3), (8,3), (12, 3),
38 . (3,5), (8,5), (12, 5),
D o (3,7), (8 7),(12,7),
l - (3.9). 8, 9), (12, 9.
B 1 2 3 4 5 6 7 8 910 11 12 13 14 (3 11) (8 11) (12 11)}
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Fig. 5: Tllustrating set R for a RB in 5G NR frame.

@ F{RIHH(HRmHH n Rw)—l}
— F{Elz" B (HE[ZHY + B0

— E|F{z7" 0"} |E|Hzs"H" + o]

)}
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f{*}*HHH} [HffHHHJrquDH} o

= E[s(H7)"[E| (7
-1
[ (HZ + ) }]E [(Hf—i— @) (HT + w)H}
=E[s7"|E[77"] ",
where (a) and (b) follow from the assumptions that R, is of
full rank and E[z,w] = 0, respectively. Both assumptions are
valid in practice.

It is evident that the modified MMSE detector presented
in Eq. (19) does not need channel knowledge H. Instead, it
uses E[sy7"'] and E[§7"] to replace the channel matrices. Now
the question to ask is how to compute these two terms. In our
design, we use the sample averaging operation to approach the
statistical expectation based on the fact that every subframe in
5G frame structure has DMRS. Consider a specific resource
block (RB) in 5G NR frame. Denote R as the set of DMRS
in the resource block, as shown in Figure 5. Denote [ and k
as the index of OFDM symbol and subcarrier in a resource
block, respectively. Then, we approach E[s7"'] and E[77"] via
approximation as follows: E[sgH] £ Z(z mer SR, k)H
and E[yg"] 2 > kyer Y R k)H.Consequently, the
DBF vector that the Rx uses to decode the data symbols in
this resource block can be expressed as:

@) (HT + w)H}_l

b

A
\_/

(19)

F{P} = Elsy"El7y")
é[Z(lk)lkH lk)(lk)},(ZO)
(,k)ER (Lk)ER

where (-)7 is the pseudo-inverse operator, and s(/,k) and
y(l, k) represent the transmitted and received reference signal
on OFDM symbol [ and subcarrier k, respectively.

C. Performance Analysis

Given its generality, it is extremely hard to analytically
characterize the performance of the modified MMSE detector
in general settings. Hence, we study its performance in an
ideal case. Consider one resource block as shown in Figure 5.
We make the following assumptions: (i) the 12 subcarrier
channels of this resource block are frequency-flat; (ii) the
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channel matrix H is full rank; (iii) the Rx has more antennas
than the Jx has, i.e., M > N; (iv) the number of DMRS
elements is not less than the number of jamming sources, i.e.,
|R| > N; and (v) noise is zero, i.e., o, = 0. In this special
case, we have the following lemma.

Lemma 1: In the above case, the modified MMSE detector
in (20) can perfectly decode the signal in the presence of
Jamming signals, i.e., §(I,k) = s(l, k), VI, k.

The proof is provided in Appendix A. We note that the
assumption |R| > N always holds in practical mmWave
communication systems. Here, N denotes the number of RF
chains (i.e., digital channels, not the number of patch antenna
elements) in a mmWave device, which is typically limited
to two. Therefore, this assumption almost surely holds in
practice. In what follows, we conduct experiments in realistic
scenarios to evaluate the performance of this digital beam-
former.

VII. IMPLEMENTATION

To evaluate the performance of our jamming-resistant
mmWave Rx, we have built a mmWave testbed for demon-
stration and evaluation. Our testbed consists of three nodes:
one Tx, one Jx, and one Rx, which we describe as follows.

Tx: The hardware of Tx includes a computer for data
processing, a USRP X310 device for signal processing, and a
Sivers EVK02004 for mmWave (28 GHz) signal transmission.
We implemented the waveform and frame structure at the
Tx using the PHY-layer code from srsRAN Project [43].
A simplified MAC layer was implemented to accept data
packets from the upper-layer applications and modulate the
data for signal transmission. All data process was done on
the general computer using multi-thread implementation. The
computer sends the processed I/Q data to USRP X310 via
10 Gbps Ethernet. USRP X310 up-converts the signal to
IF (immediate frequency) at 3.5 GHz, which was sent to
Sivers EVKO02004 via differential SMA connectors. Sivers
EVKO02004 up-converts the 3.5 GHz IF signal to 28 GHz
RF (radio frequency) signal for transmission via its phased-
array antenna. The phased-array antenna has 16 (4x4) patch
elements, which can be controlled electronically via a USB
interface for analog beam steering. Sivers EVK02004 has two
input connectors: one for horizontal polarization transmission,
and the other for vertical polarization transmission. The IF
signal from USRP X310 goes through a power divider (a
passive device) to feed the two input connectors for both
horizontal and vertical transmissions.

Jx: The Jx has a similar setup as the Tx. The only
differences are: i) it uses USRP N210 rather than X310;

(b) Scenario 2: Conference room.

- 75?__"—————— , -r'
B

-—

(d) Scenario 4: Hallway.

Fig. 7: Four scenarios for experimentation.

i) it transmits pseudo-noise, WiFi waveforms, and CDMA
waveforms, rather than NR waveforms; iii) its transmission
power is 10 dB stronger than the Tx’s power. This was
achieved through the gain control on Sivers EVK02004.

Rx: The Rx was built using a high-performance computer,
USRP N310, and Sivers EVK02004. Different from the Tx, the
Rx has two independent data streams from the same phased-
array antenna (via horizontal and vertical polarization). In the
general computer, we implemented the signal demodulation
modules as well as our ABF and DBF algorithms to de-
code NR signal frames from the Tx, in the presence of a
jamming signal. All the signal/data processing modules were
implemented on the computer using C++ and multi-thread
programming.

System Parameters: Due to the hardware limitation, the
bandwidth of signal transmission is 20 MHz. The sampling
rate is 30.72 MSps. The Tx’s transmission power is about 15
dBm, while the Jx’s transmission power is about 25 dBm. The
phased-array antenna has 63 beam candidates for horizontal
polarization and 63 beam candidates for vertical polarization.
In total, there are 3,969 (63x63) analog beams for selection.

Real-Time Video streaming Demo: To show the robustness
of our jamming-resistant Rx, we have created a demo video
showing real-time video streaming in the presence of constant
jamming signals. The demo can be found in [17].



VIII. PERFORMANCE EVALUATION

In this section, we conduct experiments to characterize the
performance of our jamming-resilient Rx design in realistic
scenarios. While our approach is generic, our experiments
focus on the case where the network has a single Jx. We try
to answer the following questions.

o Q1 (Section VIII-B): How many iterations are needed
for BayOpt ABF in general? What is the performance
loss of BayOpt ABF compared to exhaustive search?

e Q2 (Section VIII-C): What is the throughput gain of our
modified MMSE DBF?

¢ Q3 (Section VIII-D): What is the throughput gain of
our jamming-resistant Rx (i.e., ABF + DBF) in realistic
scenarios?

A. Experimental Setup and Metrics

Experimental Setup: We deploy our testbed in four differ-
ent scenarios as shown in Figure 7 to evaluate the performance
of our jamming-resilient Rx. In each scenario, we place the
three nodes (Tx, Jx, and Rx) at different locations for the
measurement. Each scenario has 40 locations that have been
tested. The Tx sends 5G NR signals using the frame structure
shown in Figure 2. Unless stated otherwise, the Jx transmits
pseudo-noise as the jamming signal.

Measurement Methodology and Metrics: We use three
metrics to measure the performance of the proposed jamming-
resistant Rx: signal-to-jamming power ratio (SJR), EVM, and
throughput. SJR can be measured at the Rx by intentionally
turning on/off Tx or Jx. This metric is used to characterize
the performance of ABF at the Rx. EVM can be measured
directly at the Rx. It characterizes the overall performance of
the communications except for the modulation and channel
codes. In our experiments, it is challenging to measure the
throughput directly on the testbed. This is because throughput
measurement requires an accurate rate adaptation and retrans-
mission mechanism, which requires tremendous engineering
efforts to implement and calibrate. In light of this challenge,
we use the measured EVM to estimate the throughput using the
MCS table in Table II. Specifically, we calculate throughput
as follows: TP = BW x v(EV M), where BW=400MHz is
the mmWave bandwidth, EVM is the measured value from
experiments, 7(-) returns the best spectrum efficiency for a
given EVM value shown in Table II.

EVM-to-Throughput Mapping: This table-lookup ap-
proach for throughput estimation has been widely used in
the 4G/5G industry for system-level simulation [44]. The
measured EVM already accounts for dynamic network factors
such as transmission power, path loss, fast fading, noise, and
interference levels. The resulting EVM-to-throughput value is
determined by physical-layer techniques such as modulation
and coding, and is therefore deterministic. This mapping is
widely regarded as accurate and capable of providing high-
fidelity performance evaluation.

B. Analog Beamforming (ABF)

The convergence speed of BayOpt is critical as it determines
the communication overhead. In this part, we examine the

TABLE II: EVM-to-MCS mapping in a 5G network [45].

EVM (dB) 2| -5 |-10|-14]-16|-19 | -20 | 23 | -26 -30 -33

Modulation order 2 2 6 6 6 6 8 8 8 10 10
Coding rate 13123 173 | 1/2|2/3]5/6]| 23 | 5/6 | 89 |13/14 | 17/18
Spectrum eff (bps/Hz)| 2/3 | 4/3 | 2 3 4 5 16/3 | 20/3 | 64/9 | 65/7 | 85/9
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Fig. 8: Rx’s SJIR, EVM, and throughput performance versus
the number of BayOpt iterations for its ABF in four scenarios.

convergence speed of our proposed BayOPT framework for
ABF. Our aim is to answer the following two questions: i)
how many iterations are needed for BayOpt to achieve its
convergence? ii) what is its performance loss compared to
exhaustive search? We first examine a case in each scenario,
and then analyze extensive experimental data. Throughout our
experiments in this part, the DBF is fixed.

Case studies: To understand how BayOpt converges, we
select one case from each of the four scenarios shown in
Figure 7. We examine the collected data to observe the Rx’s
performance (SJR, EVM, and throughput) versus the number
of iterations in BayOpt. Figure 8 presents our experimental
results. Recall that the Rx has two data streams from the
phased-array antenna: one from horizontal polarization, and
the other from vertical polarization. Figure 8(a) and (b) present
the measured SJR of these two data streams versus the number
of search iterations for ABF. It is evident that the SJR of
both data streams increases when the number of iterations
increases. This indicates the efficiency of BayOpt. Figure 8(c)
and (d) present the measured EVM and throughput of the Rx,
respectively. It can be seen that the EVM keeps decreasing,
and the throughput keeps increasing, as the number of BayOpt
iterations increases. The 25 iterations of the search for ABF
almost double the Rx’s throughput in all four scenarios. The
measurement results show that 25 iterations are sufficient for
BayOpt in this case.

Extensive Studies: We now extend the case studies to
extensive measurement. For each of those four scenarios,
we randomly choose 40 locations for Tx, Jx, and Rx. The
orientation of their phased-array antenna is randomly adjusted
but pointing to each other in general. For each case, we
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Fig. 10: Average EVM and throughput performance over all
locations in four scenarios.

record the SJR of two data streams and the EVM value
in each iteration of BayOpt. We collect the improvement
of SJIR, EVM, and throughput in each iteration of BayOpt
at each location of those four scenarios. For instance, the
average improvement of EVM is expressed as AEVM (i) =
T Y 1<i<r [EVM(i) — EVM;(1)], where EVM,(i) is the
measured decibel EVM in the ith iteration of BayOpt at
location {.

We plot the average improvement of SJR, EVM and
throughput in Figure 9. It can be observed that as the number
of iterations increases, the EVM decreases while the through-
put increases. The average EVM is 7.85 dB, and the average
throughput 0.93 Gbps.

In addition to the per-iteration improvement, we also cal-
culate the average EVM and throughput of each BayOpt
iteration. For instance, the average EVM is calculated as
EVM(i) = + > <<, EVM,(i), where i is iteration index.
Figure 10 plots the average EVM and throughput versus the
number of iterations. It can be seen that after 25 iterations
throughput increases 72.6%, 90.6%, 74.1%, and 78.9% in
office, conference room, classroom, and hallway, respectively.

EVM and Throughput Comparison: To characterize the
performance of BayOpt, we compare it with two benchmarks:
Exhaustive search and Nelder-Mead search [46]. In this com-
parison, BayOpt uses 25 iterations. In contrast, exhaustive
search uses 3,969 iterations, and Nelder-Mead search uses
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Fig. 11: Comparison of BayOpt with exhaustive search and
Nelder-Mead Search.
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25 iterations. Figure 11 depicts our experimental results.
We can observe that exhaustive search, BayOpt and Nelder-
Mead Search can reach an average EVM of -20.97 dB,
-18.51 dB, and -15.27 dB, respectively; and they achieve
an average throughput of 2.67 Gbps, 2.13 Gbps, and 1.6
Gbps, respectively. BayOpt can achieve 80.0% throughput
of exhaustive search while using only 0.6% search time of
exhaustive search (25 search iterations versus 3,969 search
iterations). Compared to BayOpt ABF, Nelder-Mead Search
achieves 33.1% throughput gain when using the same number
of search iterations.

C. Digital Beamforming (DBF)

To study the performance of its DBF, we fix the Rx’s ABF
and consider two cases: Modified MMSE for DBF [M-MMSE
DBF, see Eqn (20)] and Conventional MMSE for DBF [C-
MMSE DBEF, see Eqn (16)]. In what follows, we first look into
case studies and then present our extensive measurements.

Case Studies: To better understand DBF, we select one case
from each of the four scenarios shown in Figure 7 to examine
the performance of M-MMSE DBF in the comparison of C-
MMSE DBF. Figure 12 presents the EVM and throughput
distributions of M-MMSE DBF and C-MMSE DBF. The
distribution is from the large number of beam directions used
for ABF. It can be observed that M-MMSE DBF can achieve
EVM with an average of -11.9 dB, -12.8 dB, -12.1 dB, and
-12.4 dB in office, conference room, classroom, and hallway,
respectively. Compared to C-MMSE DBF, M-MMSE DBF
improves the EVM performance by 8.5 dB, 8.8 dB, 8.24 dB,
and 9.1 dB respectively. M-MMSE can achieve throughput
with an average of 1.29 Gbps, 1.37 Gbps, 1.26 Gbps, and
1.33 Gbps respectively. Compared to C-MMSE DBEF, M-
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Fig. 14: EVM distribution in four scenarios.

MMSE DBF increases the average throughput by 0.76 Gbps,
0.8 Gbps, 0.69 Gbps, and 0.82 Gbps respectively.

Extensive Studies: For extensive study of DBF perfor-
mance, we measured EVM difference in the four scenarios
as shown in Figure 7. The Tx, Jx, and Rx nodes were
placed at different locations and faced to different directions.
Figure 13 shows the DBF performance from our extensive
studies. We observed that, compared to C-MMSE, M-MMSE
DBF improves the average EVM performance by 9.0 dB and
increases the average throughput by 0.96 Gbps.

D. Overall Performance

After examining the performance of BayOpt ABF and M-
MMSE DBF individually, we now study the overall perfor-
mance of our proposed anti-jamming Rx by combining ABF
and DBF together. Meanwhile, we conduct an ablation study to
evaluate the performance gains of BayOpt ABF and M-MMSE
DBF individually. Again, we use EVM and throughput as the
performance metrics.

Figure 14 presents the EVM distribution in the four sce-
narios when ABF and DBF are separately and jointly used.
It can be seen that both BayOpt ABF and M-MMSE DBF
significantly decrease the EVM at the Rx. Specifically, M-
MMSE DBF decreases the Rx’s EVM by an average of
7.68 dB; and BayOpt ABF decreases the Rx’s EVM by an
average of 5.99 dB. The combination of BayOpt ABF and
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Fig. 15: Throughput distribution in four scenarios.

TABLE III: Average performance under four scenarios.

‘ Office ‘ Conf. room ‘ Classroom ‘ Hallway | Average
EVM (dB)
BayOpt ABF Only | -3.54 -4.47 -6.54 -4.68 -4.81
M-MMSE DBF Only| -11.93 -12.76 -12.38 -12.10 -12.49
BayOpt ABF +
M-MMSE DBE -19.11 -18.52 -18.33 -17.96 -18.48
Throughput (Gbps)
BayOpt ABF Only | 0.55 0.59 0.63 0.71 0.62
M-MMSE DBF Only| 1.31 1.23 1.22 1.28 1.26
BayOpt ABF +
M-MMSE DBE 222 2.11 2.02 2.06 2.10

M-MMSE DBF decreases the Rx’s EVM by an average of
13.67 dB.

Figure 15 presents the Rx’s throughput distribution in the
four scenarios. It can be seen that, while using either BayOpt
ABF or M-MMSE DBF can achieve a certain amount of
throughput gain, the combination of these two techniques
can significantly improve the throughput in the presence of
jamming signal. This reveals the efficiency of our holistic
anti-jamming solution for a mmWave Rx. Numerically, M-
MMSE DBF improves the average throughput by 0.84 Gbps;
and BayOpt ABF improves the Rx’s average throughput by
0.64 Gbps. The combination of these two techniques can
improve the throughput by 1.48 Gbps. Table III summarizes
the Rx’s average EVM and throughput in the four scenarios.

It can be seen that the throughput CDF of our holistic
algorithm (BayOpt ABF + M-MMSE DBF) in Figure 15 is
not widely spread. This is because the proposed jamming
mitigation algorithm is effective in most cases, due to two main
factors: (i) mmWave signals do not propagate like laser beams;
our measurements show that multipath and reflection are com-
mon in indoor environments; and (ii) the mmWave receiver
has 16 antenna elements, each supporting both horizontal
and vertical polarization, resulting in 32 effective channels
for signal combining and jamming mitigation. One might
expect the algorithm to be ineffective when the transmitter
and jammer are located in the same direction relative to the
receiver. However, we did not observe this phenomenon in
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Fig. 16: EVM and throughput distribution when the Jx uses
different jamming waveforms.

our experiments. We attribute this to the short wavelength of
mmWave signals, the availability of 32 antenna elements, and
the strong multipath effects in indoor scenarios.

Different Jamming Waveforms: To fully understand the
jamming mitigation capability of our proposed Rx, we evaluate
its performance when the Jx uses different jamming wave-
forms: pseudo-noise, WiFi, and CDMA. Following the same
token, we evaluate the performance of BayOpt ABF and M-
MMSE DBF techniques separately and jointly to characterize
their individual and overall performances. Figure 16 illus-
trates the effectiveness of our proposed Rx against various
jamming waveforms. Notably, BayOpt ABF and M-MMSE
DBF significantly enhance performance, reducing the EVM
by 15.57 dB, 16.23 dB, and 17.47 dB for pseudo-noise,
WiFi, and CDMA jamming waveforms, respectively. Addi-
tionally, throughput improvements of 1.67 Gbps, 2.30 Gbps,
and 2.03 Gbps are observed for the same waveforms. Figure 17
demonstrates the DBF performance, highlighting that M-
MMSE DBF yields EVM gains of 8.78 dB, 12.34 dB, and
15.91 dB, alongside throughput enhancements of 0.96 Gbps,
1.34 Gbps, and 1.79 Gbps. These results affirm the proposed
anti-jamming Rx’s capability to counteract diverse jamming
strategies, thereby underscoring its potential in facilitating
spectrum sharing.

Comparison with Jamming-free Case: Above we pre-
sented the EVM and throughput performance of our proposed
anti-jamming Rx in the scenarios where Jx transmits 10 dB
stronger signals than Tx. Here, we conduct experiments for
the following performance comparison: i) the proposed Rx in
jamming scenarios; and ii) a conventional Rx in jamming-
free scenarios. To measure the performance of a conventional
Rx in jamming-free scenarios, we use its two RF chains for
spatial diversity. That is, the Tx sends one data stream to the
Rx; the Rx uses maximum ratio combination as its DBF for
signal demodulation. Additionally, the Rx uses BayOpt ABF
to identify its best analog beam index within 25 iterations.
Figure 18 presents the measured EVM and throughput in
four scenarios. It can be seen that our proposed Rx under
jamming attack can achieve 73.7%, 71.7%, 71.9%, and 74.9%
throughput compared to the conventional Rx in jamming-free
scenarios. The results show that the proposed Rx is efficient
in salvaging mmWave communications in the presence of
jamming attacks.
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IX. CONCLUDING REMARKS

In this paper, we presented a joint ABF and DBF scheme
for a mmWave Rx to enable jamming-resilient mmWave
communications by leveraging the polarization diversity of
phased-array antennas. The beamforming scheme comprises
two key techniques: a BayOpt framework for ABF, and an M-
MMSE detector for DBF. The combination of these techniques
enables an Rx to suppress jamming signals in both analog and
digital domain, making it capable of decoding data packets
in the presence of jamming signals. Extensive over-the-air
experiments confirm the effectiveness and efficiency of those
two techniques, and also demonstrated the jamming resilience
of the mmWave Rx.

This work focuses on addressing constant jamming attacks.
To extend the proposed anti-constant-jamming solution to
counter reactive and cognitive jamming, it is essential to
incorporate adaptability, unpredictability, and rapid response
mechanisms. Rapid jammer detection can be achieved by
monitoring real-time link metrics, such as error rates or
signal subspace changes, and triggering immediate adapta-
tion when shifts are observed. Analog beamforming can be
enhanced with time-aware optimization techniques, such as
sliding-window Bayesian optimization or contextual bandits,
to quickly re-select beams under changing jamming con-
ditions. Digital beamforming should evolve from batch to
online or recursive updates, enabling real-time suppression of
adaptive jamming signals through subspace tracking or blind
separation methods.

APPENDIX A
PROOF OF LEMMA 1

Given that M > N, H is a square or tall/thin matrix.
Moreover, H in real systems is always of full column rank.
Then, based on (20), we have:

p =F{P}
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where (a) follows from (20); (b) follows from the fact that

g:

R,
the

HZX when o,, = 0; (c) follows from our definition that
=2 aper L K)E(Q, k)M; (d) follows from that fact that
operator F{-} can be extended to include more terms; (e)

and (f) follow from the fact that H is a square or tall matrix
of full rank.

Based on (21), we have

S

$(1,k) = 7" (L k) = F{H'}5(1, k)

= F{H'IHZ(l,k) = F{Z(L,k)} = s(L.k). (22)

This completes our proof.
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