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SPP: Achieving Low-Probability-of-Intercept
Cellular and Wi-Fi Communications via
MIMO-based Spatial Pilot Perturbation

Peihao Yan, Milad Afshari, and Huacheng Zeng

Abstract—Low Probability of Intercept (LPI) wireless commu-
nication is a critical aspect of modern wireless technology. Despite
various techniques developed for LPI wireless communication,
most of them require some form of pre-existing knowledge
(e.g., encryption keys) or specific information (e.g., eavesdropper
location and channel details). In this paper, we propose a novel
physical-layer precoding technique called spatial pilot pertur-
bation (SPP) to achieve efficient LPI wireless communications.
Unlike existing methods, SPP operates without the need for
pre-shared information between the two communication devices,
nor any knowledge about potential eavesdroppers. It remains
transparent to users and thus backward-compatible with off-
the-shelf 5G/WiFi user devices. The core idea of SPP is to use
different precoders for pilot and data symbols in a signal frame
at the physical layer. Through a systematic precoder design,
the pilot and data symbols will experience identical compound
channels upon arrival at intended receivers, but experience
different compound channels when intercepted by eavesdroppers.
Consequently, the intended receivers can demodulate the signal
frame, while eavesdroppers cannot. We have implemented SPP
on 5G and WiFi testbeds and evaluated its performance through
over-the-air experiments. Extensive experimental results show
that SPP achieves an eavesdropping rate of ≤0.2% for 5G and
≤0.9% for WiFi, both at the cost of less than 18% throughput.

Index Terms—Low probability of intercept (LPI), wireless
communications, physical-layer security, precoding, 5/6G, Wi-Fi

I. INTRODUCTION

While the over-the-air broadcast nature of radio waves
enables our society to enjoy mobile wireless Internet services,
it also poses a threat to data privacy—data packets sent
by a transmitter may be eavesdropped by an unintended
receiver. To safeguard sensitive information against over-the-
air interception, key-based data encryption is arguably the
most powerful LPI approach. It has been widely used in
real-life wireless communication systems like 4/5G and WiFi.
But this approach requires either a secure key distribution
infrastructure or a computation-intensive key exchange mech-
anism (e.g., Diffie–Hellman key exchange [1]), making it
unsuitable for some applications such as low-power low-
cost 6G IoT communications, 6G device-to-device, vehicle-to-
vehicle communications, and military ad hoc communications
in harsh battlefields.

To complement and strengthen key-encryption-based LPI
solutions, a variety of physical-layer LPI techniques have

P. Yan, M. Afshari, and H. Zeng are with the Department of Computer
Science and Engineering at Michigan State University, East Lansing, MI
48824. Corresponding author: H. Zeng (hzeng@msu.edu).

This work was supported in part by NSF Grant CNS-2312448.

been proposed, such as spectrum spreading, frequency hop-
ping, artificial noise injection [2]–[5], preamble randomization
[6], beamforming [7]–[26], beam nullification [8], [23], [24],
spatial-time-modulation [27]–[29], and channel-based key
generation [30], [31]. However, most existing physical-layer
LPI communication techniques require pre-shared knowledge
between the transmitter and receiver, instantaneous informa-
tion about potential eavesdroppers, or rely upon other im-
practical assumptions. For instance, spectrum spreading and
frequency hopping, albeit relatively easy to implement, suffer
from inefficient spectrum utilization. Artificial noise injection
requires the prior sharing of noise characteristics between
the transmitter and receiver. Beam nullification depends on
knowledge of the eavesdropper’s channel or angular location,
which is difficult to acquire in practice. More importantly,
when deployed in real-world wireless communication systems,
most of these techniques are incompatible with incumbent
cellular and WiFi client devices. Consequently, physical-layer
LPI techniques have not seen widespread adoption in real-
world wireless communication networks.

To complement and strengthen the key-encryption-based
LPI solution, physical-layer LPI techniques have been pro-
posed in an increasingly sophisticated form, such as spectrum
spreading, frequency hopping, artificial noise injection [2]–
[5], preamble randomization [6], beamforming [7]–[26], beam
nullification [8], [23], [24], misinformation [32], and channel-
based key generation [30], [31]. However, existing physical-
layer LPI techniques need pre-shared knowledge between
transmitter and receiver, demand instantaneous information of
potential eavesdroppers, or other demanding requirements. For
instance, although spectrum spreading and frequency hopping
are easy to deploy, they appear to be inefficient in spectrum
utilization. Artificial noise injection needs to share the prior
knowledge of noise between transmitter and receiver. Beam
nullification relies on the knowledge of the channel between
the transmitter and eavesdropper or their angular direction
of the eavesdropper, which is to obtain in practice. More
importantly, most of existing techniques, when applied to real-
world wireless communication systems, are not compatible
with billions of cellular and WiFi client devices that are
already in use. As such, physical-layer LPI techniques have
never been widely adopted by real-life wireless networks.

In this paper, we present a physical-layer MIMO-based
(multi-input and multi-output based) precoding technique,
called spatial pilot perturbation (SPP), to enable efficient
LPI 5G and WiFi communications. Consider the downlink
communication from a 5G base station (BS) to one or multiple
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users in the face of radio eavesdroppers. The BS is equipped
with multiple antennas, while user and eavesdropper are
equipped with one or multiple antennas. In such a network,
SPP is designed based on two observations: First, radio
signals in wireless communication systems are organized in
a frame format. In general, each frame comprises two types
of symbols: pilot symbols and data symbols. Pilot symbols are
also referred to as reference signals (e.g., DMRS in 4/5G) and
preamble (e.g., in WiFi). Pilot symbols are used for intended
receivers to estimate channels while data symbols are used
to carry payloads from the upper layer. Second, a receiver,
either intended or unintended, relies on the pilot symbols in
a frame for channel estimation, which plays a critical role in
demodulating the data symbols in a frame. A receiver can
successfully demodulate the data symbols in a frame only
if its pilot and data symbols experience identical (or very
similar) compound channels when arriving at the receiver.
This is a foundation for the design of broadband wireless
communication systems such as cellular and WiFi.

SPP leverages the above two observations to prevent eaves-
droppers from demodulating the data symbols in a frame. The
key idea behind SPP is to use different precoders for the
pilot and data symbols in each frame. Through a systematic
design of precoders, the pilot and data symbols in a frame will
experience identical compound channel when arriving at the
intended users, but experience different compound channels
when arriving at any unintended users (eavesdroppers). As
a result, the intended users are capable of demodulating
the data symbols in the frame, while unintended users are
not. The key question to ask is how to design different
precoders for the pilot and data symbols in a frame so that
they will experience the desired channels. To address this
question, we formulate the precoder design problem as an
optimization problem and introduce two important concepts
to solve this optimization problem: transmission vector and
perturbation vector. It turns out that these two concepts can
significantly facilitate the design and analysis of the precoders.
The transmission vector can be designed as if the network has
no eavesdroppers; and the perturbation vector can be selected
directly from the user channel’s nullspace. Using the linear
combination of transmission and perturbation vectors as the
precoder, the pilot and data symbols will experience identical
compound channel upon arriving at intended users, but they
will encounter different compound channels when arriving at
unintended users. Additionally, the precoding operation does
not require any knowledge about eavesdroppers and remain
transparent to intended users.

We have implemented SPP on 5G and WiFi software-
defined radio (SDR) testbeds. We have conducted real-time,
over-the-air experiments on both testbeds, and evaluated the
performance (eavesdropping rate) and cost (throughput degra-
dation) of SPP in a realistic environment when the BS/AP
has two, three, and four antennas. Table I summarizes our
experimental results when the BS/AP has no knowledge about
eavesdroppers. In 5G, SPP achieves ≤0.2% eavesdropping rate
at the cost of ≤17% throughput degradation. In WiFi, SPP
demonstrates ≤0.9% eavesdropping rate at the cost of ≤18%
throughput degradation.

TABLE I: A summary of SPP’s average eavesdropping rate
and throughput cost.

5G WiFi
BS has 2
antennas

BS has 3
antennas

BS has 4
antennas

AP has 2
antennas

AP has 3
antennas

AP has 4
antennas

Eavesdropping rate 3.1e-4 9.3e-4 2.1e-3 2.3e-3 6.2e-3 9.4e-3
Throughput cost 12% 17% 13% 10% 18% 14%

Intended 

user N

Unintended user 1

(eavesdropper 1)

Intended 

user 1

......

Base station

...

M antennas

Unintended user K

(eavesdropper K)

Fig. 1: System model.

Table II presents a comparison between SPP and existing
LPI approaches, positioning it within the context of the lit-
erature. The contributions of this paper are summarized as
follows.

• SPP is a novel physical-layer technique for LPI wireless
communications. It does not need any knowledge about
eavesdroppers. Its operations reside only in BS/AP and
remain fully transparent to users. It is backward compat-
ible with off-the-shelf cellular and WiFi client devices
when applied in 5G/WiFi downlink.

• Efficient precoders have been designed for SPP. The
precoders ensure that the pilot and data symbols in
a frame experience identical channels upon arriving at
users, but encounter different channels when intercepted
by eavesdroppers.

• We have conducted extensive real-time, over-the-air ex-
periments on 5G and WiFi testbeds to evaluate the
performance of SPP. Experimental results confirm the
high effectiveness and efficiency of SPP.

II. PROBLEM DESCRIPTION

We consider a white-box eavesdropping attack in broadband
wireless communication systems such as 4/5G and WiFi.
Figure 1 shows an example of such an attack in 5G cellular
networks. We assume that the BS is equipped with multiple
antennas, while the user device is equipped with one or
multiple antennas. In the proximity of the BS, there are one
or more unintended users acting as eavesdroppers aimed at
decoding the data packets from the BS. Each eavesdropper is
equipped with one or multiple antennas. All eavesdroppers are
capable of sharing information with each other and performing
joint operations in their attempts to decode the data packets
from the BS.

Our objective is to minimize the eavesdropping rate for the
data packets from the BS to the user devices by leveraging
MIMO-based precoding techniques at the physical layer. To
the end, we consider two eavesdropping cases: out-of-network
eavesdropping and in-network eavesdropping. In the former
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TABLE II: Comparison of SPP and the representative LPI approaches in the literature.

LPI approaches
Need

pre-shared
knowledge?

Need
knowledge of
eavesdropper?

Digital
or

analog?

Work
for

OFDM?

Single
eaves-

dropper?

Spectral
efficiency

Computation
complexity

Compatible
with commercial

user devices?
Spectrum spreading and frequency hopping Yes No Digital No No Low Medium No
Key-based data encryption Yes No Digital Yes No High High No
Diffie–Hellman key exchange [1] No No Digital Yes No High High No
Artificial noise injection [2]–[5] Yes No Digital Yes No Low High No
Preamble randomization [6] Yes No Digital Yes No High Medium No
MU-MIMO beamforming DgDi [7]–[26] No Yes (channel) Digital Yes Yes Medium Medium Yes
Beam nullification [8], [23], [24] No Yes (direction) Either Yes Yes Medium Low Yes
Spatial-time-modulation [27]–[29], No No Analog No Yes Medium Low No
Channel-based key generation [30], [31] No No Digital Yes No High High No
SPP (This work) No No Digital Yes No Medium Low Yes
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Fig. 2: Pilot and data symbols in 5G and WiFi frames.

case, the BS has no channel/location knowledge about the
eavesdroppers. In the latter case, the BS has some channel
knowledge of the eavesdroppers and thus can better opti-
mize its precoding design. Successful design will add a new
layer of protection to the ubiquitous wireless communications.
Particularly, for the case where key-based data encryption
is not an option due to hardware, software and energy
constraints, physical-layer LPI techniques are of paramount
importance to safeguard communication privacy [33].

III. BACKGROUND

A. Pilots in Signal Frame

When radio signal travels from a transmitter to a receiver, it
experiences power attenuation, phase rotation, and multipath
distortion. At the receiver, channel estimation and equalization
play a crucial role in its signal detection pipeline. To enable
signal detection at a receiver, both cellular and WiFi systems
embed pilot symbols (a.k.a., preamble and reference signal)
in their individual frames. The pilot symbols allow a receiver
to estimate the compound channel1 that a signal frame expe-
riences, which is then used to recover data symbols in the
frame.

Figure 2(a) shows the 5G New Radio (NR) frame structure.
A frame has 10 subframes, each of which consists of two-
dimensional resource elements in an array of OFDM symbols.

1In this paper, compound channel refers to the end-to-end channel effect
including transmitter-side precoder, response of radio frequency circuits, and
over-the-air channel.

Here, the pilots are demodulation reference signal (DMRS) as
shown in the figure. They are distributed over different OFDM
symbols and used by a receiver to estimate the compound
channel for signal detection. Figure 2(b) shows the legacy
802.11 frame structure, which includes legacy short training
field (L-STF), legacy long training field (L-LTF), signal (SIG),
and payload data. Here, the pilot refers to the preamble (L-STF
and L-LTF). While both cellular and WiFi frame structures are
evolving, all OFDM frames are designed following the same
principle—embedding pilot symbols in a frame for receivers
to estimate channel and decode data symbols.

A foundation of cellular and WiFi systems is that the pilot
and data symbols in the same frame (equivalently subframe or
time slot in 5G NR) experience identical compound channels.
To ground this foundation, the system parameters of 5G and
WiFi are meticulously selected, including the frame length,
the pilot density, and the user’s maximum moving speed.

B. Understand PER, MCS and EVM

When a cellular or WiFi device receives a data packet,
the probability of it successfully decoding this data packet is
determined by two factors: i) modulation and coding scheme
(MCS), and ii) error vector magnitude (EVM). Specifically,
the packet error rate (PER) of a receiver can be written
as a deterministic function of MCS and EVM: PER =
f(MCS,EVM). MCS is a mechanism of rate adaptation. The
transmitter first probes the quality of the channel between itself
and the receiver, and then selects the “best” MCS index for
data transmission based on the channel quality. Here, “best”
is in the sense of maximizing data rate while ensuring the
PER at the receiver is below a pre-defined threshold (e.g.,
0.1%). EVM is a system-level performance metric defined in
many communication standards. It characterizes the average
distance between the ideal and estimated QAM constellations
at a receiver. Per IEEE 802.11 standards [34], EVM =√∑Lp

l=1

∑Nc
k=1 |x̂lk−xlk|2
LpNcP

, where Lp is the number of frames
or transport blocks, Nc is the number of carriers, x̂ij and xij

are received and ideal constellation points, and P is the signal
power. In additive white Gaussian noise (AWGN) channels, it
is equivalent to the inverse of SNR.

Figure 3(a) shows 5G’s curves of block error rate (BLER,
equivalent to PER) versus SNR for different MCS indices.
Figure 3(b) shows 802.11’s curves of PER versus SNR for a
set of MCS indices. It can be seen that the PER-SNR curves
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Fig. 3: PER versus SNR in 5G and WiFi systems. Here, SNR
(dB) = (−1)× EVM (dB).

are extremely steep, thanks to the power of LDPC code used
by 5G and WiFi. In particular, a 3 dB decrease of SNR
(equivalently, 3 dB increase of EVM) is more than enough
to increase PER from 0.1% to 100%. This observation also
applies to other coding schemes such as polar code [35].
It reveals that, to prevent an eavesdropper from decoding a
data packet, we only need to make sure the EVM at the
eavesdropper is 3 dB greater than that at the intended receiver.
By doing so, through appropriate MCS selection and/or power
control at the transmitter, the intended receiver will be able to
decode the data packet while the eavesdropper will not. This
observation motivates the design of SPP.

IV. SPP FOR LPI COMMUNICATIONS

A. Basic Idea

SPP is a precoding technique for a transmitter equipped with
two or more antennas. It aims to increase the EVM at unin-
tended receiver(s) and decrease EVM at intended receiver(s),
so that the data packets can be decoded by intended receiver(s)
but cannot be decoded by unintended receivers. To attain this
aim, it takes advantage of the spatial degrees of freedom (DoF)
provided by the transmitter’s multiple antennas and uses two
different weight vectors to precode the pilot and data symbols
in the same frame (alternatively: subframe, time slot, or
resource block). Through a systematic design of the precoders,
the pilot and data symbols in a frame will experience identical
compound channels when traveling from the transmitter to the
intended receiver(s), but experience different channels when
traveling from the transmitter to the unintended receiver(s).
As such, the intended users can demodulate the signal frame
while the unintended users (eavesdroppers) cannot.

Figure 4 illustrates the basic idea of SPP in a small network.
The transmitter uses different precoders to map the pilot and
data symbols onto its two antennas. As a result, the pilot

and data signals from each of its antennas have different
amplitudes and initial phases. Both pilot and data signals go
through the over-the-air channels. When impinging on the
intended device, the pilot and data signals turn out to have
identical amplitude and identical initial phase. Hence, this
receiver can demodulate the data symbols. In contrast, when
impinging on each of the unintended devices, the pilot and data
signals are of different amplitudes and different initial phases.
This means that the pilot and data symbols experience different
compound channels when traveling from the transmitter to
the unintended device. Consequently, the unintended device is
incapable of decoding data symbols in the frame. The physical
law behind it is that different users have different over-the-air
channels almost surely.

B. SPP Problem Formulation

The key question is how to design the precoding vectors
at the BS so that the signal distortion at unintended users
can be maximized. Assume that the BS has M antennas and
each user has one antenna. There are one intended user and
K eavesdropping users. Denote the channel from the BS to
the intended device as h⃗ ∈ CM×1. Denote the channel from
the BS to the kth unintended device as g⃗k ∈ CM×1. Denote
a⃗ as the precoding vector for the pilot symbols in a frame
and b⃗ as the precoding vector for the data symbols in the
frame. Let us focus on the received signal at the unintended
device and assume that all users are working in a high-
SNR regime. At the intended device, it will take two steps
to demodulate the signal: (i) It first estimates the compound
channel using pilot symbols; the estimated channel will be
h⃗⊤a⃗. (ii) It uses the estimated channel to equalize the channel
for signal demodulation. The estimated signal can be written
as x̂ = h⃗⊤b⃗

h⃗⊤a⃗
x, where x is the original signal from the BS with

a normalized transmission power (i.e., E[|x|2] = 1). Then, the
EVM at user and eavesdropper can be written as:

EVMusr =
E[|x̂− x|2]
E[|x|2]

=
∣∣∣ h⃗⊤(⃗a− b⃗)

h⃗⊤a⃗

∣∣∣2, (1a)

EVMeav =
E[|x̂− x|2]
E[|x|2]

=
∣∣∣ g⃗⊤k (⃗a− b⃗)

g⃗⊤k a⃗

∣∣∣2. (1b)

Recall that the objective is to maximize the signal distortion
at the unintended device (i.e., EVMeav → +∞) while main-
taining the channel consistency at the intended user device
(i.e., EVMusr → 0). Then, this problem can be formulated as:

max
a⃗,⃗b

min
1≤k≤K

∣∣∣ g⃗⊤k (⃗a− b⃗)

g⃗⊤k a⃗

∣∣∣2 (2a)

s.t. h⃗⊤a⃗ = h⃗⊤b⃗; (2b)

b⃗Hb⃗ ≤ P. (2c)

where P is the transmit power of the BS. (2a) is to maximize
the signal distortion among unintended users, (2b) is to ensure
that the pilot and data symbols in a frame experience the
identical compound channels when arriving at the intended
user device (i.e., EVMusr = 0), and (2c) is the power
constraint at the BS. We note that a frame typically has much
more data symbols than pilot symbols. Therefore, (2c) applies
the power constraint to data symbols only. It can be easily
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Fig. 4: Illustration of the core idea of SPP in an infrastructure-based wireless network.

extended to a total power constraint for both pilot and data
symbols if needed.

In what follows, we design solutions to the optimization in
(2) in two cases: out-of-network eavesdropping and in-network
eavesdropping. In the former case, the BS has no channel
knowledge about eavesdroppers; in the latter case, the BS has
some channel knowledge about eavesdroppers.

V. SPP FOR OUT-OF-NETWORK EAVESDROPPERS

In this section, we assume that the BS has channel knowl-
edge about the intended user(s) but does not have any knowl-
edge about eavesdroppers. This scheme does not need any
hardware/software modifications on user devices, making SPP
backward compatible with billions of off-the-shelf WiFi and
4/5G user devices that are already in use. In what follows,
we first focus on the precoder design when the BS has one
intended user and then extend the results to the case where the
BS has multiple intended users for MU-MIMO transmission.

A. Single-User Transmission

To facilitate our discussion below, we introduce the singular
vectors of the channel from the BS to the intended user:

[u⃗1, u⃗2, . . . , u⃗M︸ ︷︷ ︸
nullspace

] = left singular vectors(⃗h1), (3)

where h⃗1 ∈ CM×1 is the intended user’s channel. In Eqn (3),
[u⃗1, u⃗2, . . . , u⃗M ] are the singular vectors sorted in the non-
increasing order of their corresponding singular values. To de-
sign the precoding vector for the SPP problem in Eqn (2), we
introduce two concepts: transmission vector and perturbation
vector. The transmission vector aims to minimize the EVM
for the intended user(s), while the perturbation vector aims
to maximize the EVM for unintended users. For this case, we
construct the transmission and perturbation vectors as follows.

• Transmission vector p⃗: The BS employs the transmis-
sion vector for precoding to maximize the signal strength

at the intended device. This is actually a well-known
multi-input-single-output (MISO) transmission paradigm,
and the optimal precoding scheme is a coherent precoder,
i.e., p⃗ =

h⃗H
1

∥h⃗1∥
. It can be easily verified that p⃗ = u⃗1.

• Perturbation vector q⃗: In order to prevent the eaves-
droppers from decoding the signal frame, a perturbation
vector is needed for precoding the pilot and data sym-
bols. Additionally, the perturbation vector should remain
transparent to the intended user, i.e., h⃗⊤

1 q⃗ = 0. Therefore,
the perturbation vector q⃗ must be orthogonal to h⃗1.
Given the properties of singular vectors in Eqn (3), the
perturbation vector must lie in the subspace spanning over
{u⃗2, . . . , u⃗M}, i.e., q⃗ ∈ ⟨u⃗2, . . . , u⃗M ⟩. A natural question
to ask is, within this nullspace, which direction offers the
best performance? To this question, since the BS has no
knowledge about eavesdroppers, any unity vectors have
the same performance of pilot perturbation. For notation
simplicity, we let q⃗ = u⃗M .

Recall that a⃗ and b⃗ are precoding vectors for the pilot and
data symbols in a frame, respectively. Based on the above
transmission and perturbation vectors, we design the precoding
vectors as follows:

a⃗ =
√
P (

√
1− ηu⃗1 +

√
ηu⃗M ),

b⃗ =
√
P (

√
1− ηu⃗1 −

√
ηu⃗M ),

(4)

where P is the total transmission power at the BS, η is the por-
tion of power allocated for pilot perturbation. Correspondingly,
1−η is the portion of power allocated for data transmission. η
is a parameter for system operators to choose. Increasing η will
enhance the protectivity of SPP against eavesdropping while
decreasing η will increase the communication throughput.
When η = 0, SPP is disabled and the system degrades to
the conventional network communications.

For the two precoding vectors in Eqn (4), we have two
remarks on SPP. Remark 1: The pilot and data sym-
bols in the same frame experience identical compound
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Fig. 5: EVM gap between user and eavesdropper in single-
user transmission when SNReav = Inf . Blue numbers in the
legend are the projected eavesdropping rate.

channels for intended receiver. Recall that the compound
channel includes the precoder at transmitter and the over-
the-air channel. The compound channel experienced by pilot
is h⃗⊤

1 a⃗, and the compound channel experienced by data is
h⃗⊤
1 b⃗. Since u⃗2, u⃗2, . . . , u⃗M are within the nullspace of h⃗1,

we have h⃗⊤
1 a⃗ = h⃗⊤

1 b⃗. Therefore, for the intended user,
the pilot and data symbols experience the same compound
channel. Remark 2: The pilot and data symbols in a frame
experience different compound channels for unintended
receiver. Given the randomness and independence of over-
the-air wireless channels, it is almost sure that g⃗⊤k u⃗m ̸= 0
for 1 ≤ m ≤ M , where g⃗k is the over-the-air channel from
the transmitter to the kth unintended user. Thus, we have
g⃗⊤k a⃗ ̸= g⃗⊤k b⃗. This means that the pilot and data symbols
in a frame experience different compound channels for an
unintended user.

Numerical Analysis. To evaluate the precoders in Eqn (4),
we consider the case where a BS serves one user in the face
of one eavesdropper. We define EVM Gap = EVMeav −
EVMusr. The BS allocates 20% of its power for pilot pertur-
bation (i.e., η = 0.2). The intended user and the eavesdropper
have independent frequency-selective channels (with five-tap
delays). We assume that the eavesdropper has SNReav = Inf .
This means that the eavesdropper is very close to the BS and
its signal distortion is solely from SPP. One million cases have
been simulated. Figure 5 shows our numerical results. Per our
discussion in §III-B, when EVM Gap ≥ 3, the eavesdropper is
incapable of decoding data packets. Therefore, the probability
of EVM gap less than 3 dB can be treated as the eavesdropping
rate, which is shown in the figure legend. It can be seen that the
eavesdropping rate is low for all cases. Even for the case where
SNRusr = 10 dB and SNReav = Inf , the eavesdropping rate
is less than 1.7%. Moreover, numerical results show that the
eavesdropping rate decreases as BS antenna number increases
or user SNR increases.

Impact of Channel Correlation. Consider the case where
both the user and the eavesdropper have a single antenna.
Denote ρ as the correlation coefficient between the BS-to-
user and BS-to-eavesdropper channels, i.e., ρ = |⃗hHg⃗|

|⃗h||g⃗|
. To

study the impact of ρ on the performance of SPP, we con-
ducted simulations using the above parameters, i.e., η = 0.2,
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(a) BS has two antennas.
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(b) BS has four antennas.

Fig. 6: EVM gap between user’s and eavesdropper’s demod-
ulated signals when the BS-to-user and BS-to-eavesdropper
channels have different correlation values (ρ).

SNRusr = 20 dB, and SNReav = ∞. Figure 6 presents the
simulation results under two settings: (i) the BS equipped
with 2 antennas, and (ii) the BS has 4 antennas. In both
settings, it is evident that the EVM Gap decreases slightly
as the channel correlation increases from 0 to 0.8. When
ρ = 1, the EVM Gap decreases to zero as expected. This
demonstrates the resilience of SPP to channel correlation. This
observation contrasts with our understanding of MU-MIMO,
whose capacity is sensitive to channel correlation. The reason
lies in the design goals: MU-MIMO aims to maximize the
capacity of all users, whereas SPP seeks to maximize the
capacity difference (i.e., EVM Gap) between the legitimate
user and the eavesdropper.

Impact of Eavesdropper’s Antenna Number: If an eaves-
dropper is equipped with multiple antennas, it may use them
to increase either channel gain or channel diversity. However,
increasing channel gain does not help the eavesdropper’s
signal demodulation, as SPP relies on pilot perturbation—not
SNR—for preventing unauthorized demodulation of data sym-
bols. Increasing channel diversity can slightly improve the
eavesdropper’s ability to demodulate signals, since having
more antennas raises the probability that at least one of its
channels is similar to the BS-to-user channel. Fortunately, SPP
is resilient to such channel correlation, as demonstrated in
Figure 6.

We conducted simulations to evaluate the impact of eaves-
dropper’s antenna number. In our setup, the BS has 4 antennas,
the user has 1 antenna, and the eavesdropper has K antennas,
where K ranges from 1 to 20. For each eavesdropper antenna,
the channel correlation between the BS-to-user and BS-to-
eavesdropper paths is set to 0.2. The user’s SNR is 20 dB,
while the eavesdropper’s SNR is set to infinity. Figure 7 shows
the simulation results. As expected, increasing the number of
eavesdropper antennas reduces the EVM of the demodulated
signal and narrows the EVM Gap. However, even with 20
antennas, the EVM Gap remains beyond the eavesdropping
threshold with high probability. These results confirm the
robustness of SPP against eavesdroppers equipped with large
antenna arrays.
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Fig. 7: Impact of eavesdropper’s antenna number on the
performance of SPP. Eav: eavesdropper; ant: antenna(s).

Algorithm 1: Precoder design for the case where the
BS has no knowledge about eavesdroppers.

Data: Intended users’ channels H=[⃗h1, h⃗2, . . . , h⃗N ] and the power
allocation value η

Result: Pilot precoders A = [⃗a1, a⃗2, . . . , a⃗N ] and data precoders
B = [⃗b1, b⃗2, . . . , b⃗N ]

1. P = HH(HHH + σ2I)−1;
2. [u⃗1, u⃗2, . . . , u⃗M ] = singular vectors(HHH);

3. p⃗i =
[P]Hi

∥[P]i∥
for i = 1, 2, . . . , N ;

4. a⃗i =
√
P
(√

1− ηp⃗i +
√
ηu⃗M

)
, i=1, 2, . . . , N ;

5. b⃗i =
√
P
(√

1− ηp⃗i −
√
ηu⃗M

)
, i=1, 2, . . . , N ;

B. MU-MIMO Transmission

When there are multiple intended users, the BS may use
MU-MIMO scheme for concurrent data transmission. MU-
MIMO is a key technology for many wireless communication
systems. When a BS has multiple antennas, it can send
multiple data streams to multiple user devices on the same
time-frequency resource block. Minimum mean square error
(MMSE) and zero-forcing (ZF) are two widely used precoding
techniques for MU-MIMO. The MMSE precoder can be
written as:

Pmu = HH(HHH + σ2I)−1, (5)

where H is the channel matrix, (·)H is the conjugate transpose
operator, and σ2 is the noise power. When letting σ = 0,
MMSE precoder degrades to ZF precoder. It is worth noting
that MU-MIMO is also vulnerable to over-the-air intercept
because an eavesdropper can decode all data streams when it
has more antennas than BS (transmitter).

Denote N as the number of intended user devices partici-
pating in the MU-MIMO transmission. Denote H = [⃗h1, h⃗2,
. . . , h⃗N ] as the MU-MIMO channel matrix. Assume that
M ≥ N +1. Then, the singular vectors of the channel matrix
can be written as:

[u⃗1, . . . , u⃗N ,︸ ︷︷ ︸
signal space

u⃗N+1, · · · , u⃗M︸ ︷︷ ︸
nullspace

] = singular vectors(HHH).

(6)
Alg. 1 presents the precoder design of SPP for down-

link MU-MIMO transmission. For the precoders produced by
Alg. 1, we have the following remarks. Remark 1: The pilot
and data symbols in a frame experience identical compound

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

C
D

F

EVM Gap (dB)

 M=4, N=2, SNRusr=15dB  [9.0e-5]
 M=4, N=2, SNRusr=20dB  [0]
 M=6, N=3, SNRusr=15dB  [1.1e-4]
 M=6, N=3, SNRusr=20dB  [0]
 M=8, N=4, SNRusr=15dB  [2.1e-4]
 M=8, N=4, SNRusr=20dB  [0]

Ea
ve

sd
ro

pp
in

g 
re

gi
m

e

Fig. 8: EVM gap between user and eavesdropper in MU-
MIMO when SNReav = Inf . Blue numbers in the legend
are the projected eavesdropping rate.

channels when reaching every intended user, i.e., h⃗⊤
i a⃗i = h⃗⊤

i b⃗i
for 1 ≤ i ≤ N . Remark 2: The pilot and data symbols in a
frame experience different compound channels almost surely
when intercepted by every eavesdropper, i.e., g⃗⊤k a⃗i ̸= g⃗⊤k b⃗i for
1 ≤ k ≤ K and 1 ≤ i ≤ N . This is because the over-the-air
channels of different users/eavesdroppers are different almost
surely.

Numerical Analysis: We use the above simulation setting
to evaluate the precoder design in 4×2, 6×3, and 8×4 MU-
MIMO cases, with η = 0.2. The eavesdropper has N antennas,
where N is the number of intended users. We assume the
eavesdropper has no noise in signal detection, i.e., SNReav =
Inf . Figure 8 presents the CDF of the measured EVM gap. It
can be observed that SPP has an extremely low eavesdropping
rate (≤2.1e-4).

VI. SPP FOR IN-NETWORK EAVESDROPPERS

In this section, we consider the case where the eavesdrop-
pers are compromised in-network users who respond to the
requests/commands from BS in a normal way but attempt to
decode the data packets for other users. As we will present in
§VII, BS will be able to obtain the implicit channel knowledge
about those eavesdroppers as long as they respond to the
requests/commands from BS.

A. SUSE: Single User and Single Eavesdropper

We first consider the case where the BS sends data packets
to a user in the presence of an eavesdropper. We assume that
both user and eavesdropper have one antenna. We also assume
that the BS has the implicit channel knowledge about both of
them. Denote g⃗ ∈ CM×1 as the implicit channel from the
BS to the eavesdropper. Recall that the optimal transmission
vector for this case is u⃗1 in Eqn (3). Then, the perturbation
vector design problem can be formulated as:

max
q⃗

∥g⃗⊤q⃗ ∥ s.t. q⃗ =

M∑
i=2

λmu⃗m and
M∑

m=2

|λm|2 = 1,

(7)
where λm ∈ C are weights for linear combination. The
first constraint ensures that the perturbation vector is in the
nullspace of the user’s channel, and the second one ensures
that its power is normalized.
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Fig. 9: EVM gap comparison in two cases: with and without
eavesdropper’s channel knowledge. Blue numbers in legends
are the projected eavesdropping rate.

This optimization problem can be analytically solved. A
closed-form solution can be obtained by projecting the eaves-
dropper’s channel vector into the nullspace of the user’s
channel vector. Mathematically, the optimal solution to Eqn (7)
can be written as follows:

q⃗ ⋆ =

∑M
m=2 u⃗

H
mg⃗ ∗u⃗m

∥
∑M

m=2 u⃗
H
mg⃗ ∗u⃗m∥

. (8)

Based on Eqn (8), the precoder vectors for pilot and data
symbols in a frame can be written as:

a⃗ =
√
P (

√
1− ηu⃗1 +

√
ηq⃗ ⋆),

b⃗ =
√
P (

√
1− ηu⃗1 −

√
ηq⃗ ⋆),

(9)

where u⃗1 is given in Eqn (3) and η is the portion of power
allocated for pilot perturbation.

Numerical Analysis: We evaluate the impact of eavesdrop-
per’s channel knowledge on the EVM gap through simulation
using the above parameters (SNReav = Inf and η = 0.2).
Figure 9 presents the numerical results. It can be seen that,
when the BS has 4 and 8 antennas, the EVM gap increases
by about 5.0 dB and 7.5 dB, respectively. When the BS has 2
antennas, the channel knowledge does not increase the EVM
gap. Based on our numerical analysis and extensive simulation,
we have the following remark: The channel knowledge about
eavesdroppers is not useful to decrease the eavesdropping rate
in the case of M ≤ N + 1. It is useful only in the case of
M > N + 1. In this case, the more antennas the BS has, the
larger gain it will generate.

B. SUME: Single User and Multiple Eavesdroppers

We now consider the case where the BS sends data packets
to one user in the presence of multiple eavesdroppers. For
ease of exposition, we assume that each eavesdropper has
one antenna. To the end, it should be seen that our approach
also works in the case where the eavesdroppers have multiple
antennas and/or work collaboratively for eavesdropping. In
this case, there are different ways to define the optimization
objective. Here, we set our optimization objective to maximize
the minimum signal distortion among all eavesdroppers, i.e.,
min1≤k≤K

{
∥g⃗⊤k q⃗ ∥

}
, where g⃗k ∈ CM×1 is the channel

of eavesdropper k, q⃗ ∈ CM×1 is the perturbation vector,
and K is the total number of eavesdroppers. Recall that

⟨u⃗2, u⃗3, . . . , u⃗M ⟩ is the nullspace of the user’s channel. The
optimization problem can be formulated as:

max
q⃗

{
min

1≤k≤K
∥g⃗⊤k q⃗ ∥

}
s.t. q⃗ =

M∑
i=2

λmu⃗m and
M∑

m=2

|λm|2 = 1 , (10)

where g⃗k and u⃗m are given values, and λm and q⃗ are optimiza-
tion variables. The constraints in Eqn (10) ensure that q⃗ lies in
the nullspace of user’s channel and that q⃗ is a unity vector.

The problem in Eqn (10) is a nonconvex optimization
problem. It is challenging to find its optimal solution due
to its max-min objective function involving the product of
two complex vectors. To address this challenge, we propose
a heuristic that consists of two steps. The first step is to
decouple the max-min operation in the objective function,
and the second step is to greedily improve the solution (i.e.,
perturbation vector q⃗) from the previous step. We elaborate
the proposed heuristic as follows.

• Step 1: Solve Subproblems for Individual Eavesdroppers.
Consider the max-min operation in the objective function of
Eqn (10). In this step, we consider the design of perturbation
vector for individual eavesdropper k. The subproblem can be
expressed as:

max
q⃗k

∥g⃗⊤k q⃗k∥ s.t. q⃗k =

M∑
m=2

λmu⃗m and
M∑

m=2

|λm|2 = 1.

It is easy to see that this subproblem has already
been solved previously. Based on Eqn (7) and Eqn (8),
its optimal solution is:

q⃗ ⋆
k =

∑M
m=2 u⃗

H
mg⃗ ∗

k u⃗m

∥
∑M

m=2 u⃗
H
mg⃗ ∗

k u⃗m∥
, 1 ≤ k ≤ K. (11)

In light of this, we first use Eqn (11) to calculate the optimal
perturbation for each individual eavesdropper (i.e., 1 ≤ k ≤
K) and then identify the best one from {q⃗ ⋆

1 , q⃗
⋆
2 , . . . , q⃗

⋆
K} as

follows:

k◦ = argmax
1≤k≤K

{
min

1≤k′≤K

(
∥g⃗⊤k′ q⃗ ⋆

k ∥
)}

. (12)

The result, q⃗ ⋆
k◦ , offers the best objective value among the

vectors in {q⃗ ⋆
1 , q⃗

⋆
2 , . . . , q⃗

⋆
K}.

• Step 2: Improve Bottleneck Perturbation Vector. While
q⃗ ⋆
k◦ offers the best objective value among {q⃗ ⋆

1 , q⃗
⋆
2 , . . . , q⃗

⋆
K},

it may not be the optimal solution to the original problem in
Eqn (10). Therefore, we further improve it as follows. Denote
k+ as the index of the eavesdropper whose channel vector
throttles the performance of q⃗ ⋆

k◦ . Then, we have

k+ = argmin
1≤k≤K

(
∥g⃗⊤k q⃗ ⋆

k◦∥
)
. (13)

To improve the objective value of current solution q⃗ ⋆
k◦ , we

move it towards q⃗ ⋆
k+ so that the performance bottleneck can

be elevated. Specifically, we seek a weight w ∈ R to combine
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Algorithm 2: Precoder design for SUME.
Data: user’ channel h⃗1 and eavesdroppers’ channels

[g⃗1, g⃗2, . . . , g⃗K ]
Result: a⃗ and b⃗
1. [u⃗1, u⃗2, . . . , u⃗M ] = singular vectors(⃗h1h⃗H

1 );
2. Calculate {q ⋆

1 , q ⋆
2 , . . . , q ⋆

K} using Eqn (11);
3. Calculate k◦ using Eqn (12) and k+ using Eqn (13);
4. Calculate w ⋆ using Eqn (14) and q⃗ ⋆ using Eqn (15);
5. a⃗ =

√
P
(√

1− ηu⃗1 +
√
ηq⃗ ⋆

)
;

6. b⃗ =
√
P
(√

1− ηu⃗1 −√
ηq⃗ ⋆

)
;
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Fig. 10: EVM gap comparison in two cases: with and without
eavesdropper’s channel knowledge. Blue numbers in legends
are the projected eavesdropping rate.

q⃗ ⋆
k◦ and q⃗ ⋆

k+ by q⃗ = wq⃗ ⋆
k◦ + (1− w)q⃗ ⋆

k+ , where

w ⋆ = argmax
0≤w≤1

(
min

1≤k′≤K

∥wg⃗⊤k′ q⃗ ⋆
k◦ + (1− w)g⃗⊤k′ q⃗ ⋆

k+∥
∥wq⃗ ⋆

k◦ + (1− w)q⃗ ⋆
k+∥

)
.

(14)
Since solving Eqn (14) is nontrivial, we shrink the search

space of w by letting w ∈ { n
Nw

: n = 0, 1, 2, · · · , Nw}. We
empirically set Nw to a small number (i.e., Nw = 10). Then,
we employ exhaustive search to find the optimal w ⋆. The final
perturbation vector can be written as:

q⃗ ⋆ = w ⋆q⃗ ⋆
k◦ + (1− w ⋆)q⃗ ⋆

k+ . (15)

Alg. 2 summarizes our precoder design for SPP in this
case. It can be verified that q⃗ ⋆ is orthogonal to h⃗1, i.e.,
(q⃗ ⋆)⊤h⃗1 = 0. This warrants that the employment of q⃗ ⋆ at the
BS will interfere with the eavesdropper but will not generate
interference for the user.

Numerical Analysis: We perform a simulation to evaluate
the impact of channel knowledge on the EVM gap using the
parameters stated before (SNReav = Inf and η = 0.2). We
consider the case of SNRusr = 15 dB. The number of eaves-
droppers ranges from 2 to 10. Figure 10 presents our numerical
results. It can be seen that, with eavesdroppers’ channel knowl-
edge, the proposed precoder design algorithm can increase the
EVM gap by 5dB to 7.5dB in the studied cases. More impor-
tantly, the eavesdropping rate is very low for all the cases.
This confirms the effectiveness of our precoder design.

C. MUME: Multiple Users and Multiple Eavesdroppers

We then consider the case where a BS sends data packets
to multiple users using MU-MIMO in the face of multiple
eavesdroppers. Suppose that the BS has implicit channel
knowledge about all users and eavesdroppers. In this case,

an eavesdropper is not possible to decode the data packets if
its antenna number is less than N . Therefore, we assume that
each eavesdropper is equipped with N antennas.

This problem is nontrivial. It remains unknown how to find
the optimal solution. Therefore, we extend the heuristic in
§VI-B to this case. Specifically, we treat the K N -antenna
eavesdroppers as KN one-antenna eavesdroppers. Then, we
employ the heuristic in §VI-B by pursuing q ⋆

1 with respect
to the KN one-antenna eavesdroppers. Alg. 3 presents our
precoder design for this case. It can be verified that the
designed perturbation vector q⃗ ⋆ is orthogonal to all the users’
channels. Therefore, the perturbation vector will not cause
interference for the MU-MIMO transmission but effectively
lower the eavesdropping rate.

Algorithm 3: Precoder design for MUME.
Data: users’ channels H = [⃗h1, h⃗2, . . . , h⃗N ] and eavesdroppers’

channels [g⃗1, g⃗2, . . . , g⃗NK ]
Result: A = [⃗a1, a⃗2, . . . , a⃗N ] and B = [⃗b1, b⃗2, . . . , b⃗N ]
1. P = HH(HHH + σ2I)−1;

2. p⃗i =
[P]Hi

∥[P]i∥
for i = 1, 2, . . . , N ;

3. [u⃗1, u⃗2, . . . , u⃗M ] = singular vectors(HHH);
4. Calculate {q ⋆

1 , q ⋆
2 , . . . , q ⋆

NK} using Eqn (11);
5. Calculate k◦ using Eqn (12) and k+ using Eqn (13);
6. Calculate w ⋆ using Eqn (14) and q⃗ ⋆ using Eqn (15);
7. a⃗i =

√
P/N

(√
1− ηp⃗i +

√
ηq⃗ ⋆

)
for i = 1, 2, . . . , N ;

8. b⃗i =
√

P/N
(√

1− ηp⃗i −
√
ηq⃗ ⋆

)
for i = 1, 2, . . . , N ;

VII. IMPLEMENTATION

In this section, we present our implementation of SPP for
evaluation. The implementation of SPP is similar to that of
traditional downlink MU-MIMO transmission in 5G and WiFi.
More importantly, SPP is limited its operations to the BS,
requiring no software/hardware modification of user devices.

A. Implicit Channel Acquisition

One challenge in the implementation of SPP is channel
acquisition. Explicit channel feedback involves channel sound-
ing, channel coefficient quantization and compression, and
channel reporting. It not only complicates the network protocol
and operation, but also entails a large airtime overhead. To
address this challenge, we found that the precoder design of
SPP actually does not need the exact channel coefficients (i.e.,
h⃗i for 1 ≤ i ≤ N ). In fact, the relative channel coefficients
(i.e., γih⃗i with γi ∈ C being any non-zero value) are sufficient
for the precoder design of SPP. In light of this, we employ the
following implementation for channel acquisition.

Implicit Channel Feedback: We perform implicit channel
feedback for BS/AP to obtain the implicit downlink channel
from itself (with multiple antennas) and one user/eavesdropper.
This implicit channel feedback is based on the reciprocity of
uplink and downlink over-the-air channels. It comprises the
following steps. First, the BS/AP sends a command to trigger
the user for a packet (e.g., Ack) transmission. Second, the
BS/AP receives the data packet from the user and estimates the
uplink channel based on the received data packet. Denote z⃗i
as the estimated uplink channel. Third, the BS/AP calculates
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the implicit downlink channel h⃗i by letting h⃗i ≡ Cz⃗i, where
C ∈ CM×M is a complex diagonal matrix for RF calibration.
Next, we introduce how to estimate RF calibration matrix C.

RF Calibration: There are different approaches for RF
calibration to obtain C, such as using an extra RF chain
for calibration and user-assisted calibration [37]. Here, we
employed the user-assisted approach for calibration. It consists
of three steps. First, the BS sends a trigger command packet
to a specific user, which estimates the downlink channel h⃗0

and reports it back to the BS. Second, based on the received
uplink report packet, the BS estimates the uplink channel z⃗0
through channel estimation and obtains the downlink channel
h⃗0 from the packet’s payload. Third, it calculates the cali-
bration diagonal matrix as follows: C = [z⃗0]1

[⃗h0]1
diag(⃗h0./z⃗0),

where [·]1 denotes the first element of the vector, ./ denotes
element-wise division, and diag(·) is to transform a vector to
a diagonal matrix. We note that C is stable over time. It is not
be affected by channels and environments. In our experiments,
we measure and update C infrequently (once per 5 seconds).
We also note that only one user is needed to participate in the
RF calibration.

B. SPP for Cellular 5G

We built a TDD 5G testbed using USRP N310 and X310
devices as well as the modules from srsRAN 4G (those in
srsRAN/lib/src/phy and srsRAN/lib/src/radio
[38]). The testbed uses one USRP N310 device for
BS, one USRP X310 for user, and another USRP
X310 for eavesdropper. To leverage the reciprocity of
over-the-air uplink and downlink channels, the BS must
use the same antenna array for transmission and re-
ception. functionHowever, srsRAN does not support this
function. Therefore, we rewrote the UHD functions in
srsRAN/lib/src/phy/rf/rf_uhd_imp.cc) so that
all USRP devices use their “TX/RX” RF port (antenna) for
both signal transmission and reception (in TDD mode). At the
PHY layer, it uses the frame as shown in Figure 2(a). The
bandwidth is 20MHz. The sampling rate is 30.72 MSps. The
subcarrier spacing is 15 kHz. The carrier frequency is 2.1 GHz.
This frequency band was used under our FCC experimental
spectrum license 0954-EX-CN-2022.

To simplify the evaluation, we implement a simple MAC
protocol for the communications between BS and users. It
works in three steps as shown in Figure 11. (i) RF calibration:
The BS uses the approach in section VII-A to obtain the RF
calibration matrix. To reduce the airtime overhead, the user
reports only three subcarriers’ channel coefficients to the BS
for calculating RF calibration matrix. (ii) Uplink channel
sounding: The BS sends a REQUEST_FOR_SOUNDING com-
mand to the user/eavesdropper. Upon receiving this command,
the user/eavesdropper sends an NULL_DATA_PACKET to the
BS. Upon receiving this packet, the BS first estimates the up-
link channel and then calculates the implicit downlink channel
based on the uplink channel and the RF calibration matrix.
(iii) Downlink transmission with SPP: Once obtaining the
downlink channel, the BS calculates the SPP precoders for
downlink transmission. As illustrated in Figure 11, a total of

SPP enabled (without 
eavesdropper’s channel)

Uplink channel 
sounding

RF 
calibration 300 data packet transmission (~ 0.5s)

SPP 
disabled

... ...

User 
1

User 
2

User 
N+K SPP enabled (with 

eavesdropper’s channel)

Fig. 11: MAC protocol of SPP evaluation.

300 data packets are transmitted in each round, which lasts
for about 0.5 seconds. Among the 300 data packets, 100
are transmitted without SPP, 100 are transmitted with SPP
when BS has not knowledge about eavesdropper(s), and 100
are transmitted with SPP when BS has implicit channel of
eavesdropper(s).

C. SPP for 802.11 WiFi

We also built a WiFi testbed using the same hardware
and the modules in gr-ieee802-11 on GitHub [39]. The WiFi
testbed is similar to 5G. The main difference is the PHY-
layer parameter and frame structure as well as the usage of
pilots (preamble) in a frame. Specifically, we use the frame
as shown in Figure 2(b). A frame has 20 OFDM symbols in
total, with 4 symbols for preamble, one for the SIG field, and
15 for carrying data payload. The FFT size is 64, and the
subcarrier spacing is 312.5 kHz. The bandwidth is 20 MHz
and the sampling rate is 20 MSps. The carrier frequency is
2.46 GHz (ISM band). The MAC layer runs in the same way
as shown in Figure 11.

VIII. EXPERIMENTAL EVALUATION

A. Methodology, Objectives, Main Results

Ideally, the SPP should be evaluated in terms of PER at
users and eavesdroppers. However, implementing the state-of-
the-art MCS selection mechanism for rate adaption as the real
5G and WiFi systems requires extremely large engineering
effort. Based on the relation of PER, MCS and EVM presented
in §III-B and the PER-versus-EVM curves in [35], [36], we
learned that SPP is capable of preventing an eavesdropper
from decoding data packets as along as the eavesdropper’s
EVM is 3 dB greater than the user’s EVM. Specifically, we
use EVM Gap = EVMeas − EVMusr as the performance
metric. If EVM Gap ≥ 3 dB, the data packets are secured
against eavesdropping; otherwise, they can be eavesdropped.
Our evaluation aims to answer the following questions.

• Q1 (§VIII-B): When the BS/AP has no knowledge about
eavesdroppers, what is the eavesdropping rate in the cases
with and without SPP.

• Q2 (§VIII-C): How useful is the eavesdropper’s CSI for
improving the performance of SPP?

• Q3 (§VIII-D): What is the throughput cost of SPP? In
other words, what is the user throughput degradation
when the BS/AP uses SPP for LPI transmission.

Experimental Setup: To investigate the above questions,
we deploy 5G and Wi-Fi networks in an indoor environment,
as illustrated in Figure 12. The BS/AP device is placed at a
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Fig. 12: Illustration of experimental scenario. There are 50 blue markers and 50 yellow markers. Blue markers indicate candidate
locations for the user device, while yellow markers represent candidate locations for the eavesdropping device. In total, there
are 2,500 user-eavesdropper location pairs.

TABLE III: A summary of SPP’s performance when BS/AP
has no channel knowledge about eavesdropper. (‘E’: Eaves-
dropper; ‘U’: intended user.)

5G WiFi
M=2 M=3 M=4 M=2 M=3 M=4

E’s EVM increase (dB) 30.0 31.4 28.6 21.3 22.2 22.3
E’s eavesdropping rate 3.1e-4 9.3e-4 2.1e-3 2.3e-3 6.2e-3 9.4e-3
U’s EVM increase (dB) 2.9 4.5 3.3 2.3 3.7 2.7
U’s throughput cost 12% 17% 13% 10% 18% 14%

fixed location and equipped with four omnidirectional anten-
nas. The network includes one user and one eavesdropper,
each equipped with a single antenna. The scenario has 50
blue markers and 50 yellow markers as shown in the figure.
The 50 blue numbers denote candidate positions for the user
device, while the 50 yellow numbers represent candidate
positions for the eavesdropper. This results in a total of 2,500
user–eavesdropper location pairs. In some cases, the user and
eavesdropper are placed very close to each other (less than
20 cm apart). For each location pair, 2,000 data packets are
collected over 40 iterations. For all data samples across all
location pairs, the EVM of demodulated signals is recorded at
both the user and eavesdropper devices, and used to construct
the EVM Gap dataset. We set η = 0.2 for all experiments.

Main Results: Table III summarizes our main experimental
observations, including the benefits (low eavesdropping rate)
and the cost (user throughput degradation) of SPP. In what
follows, we delve into the details.

B. EVM Gap without Eavesdropper’s CSI

To answer Q1, we consider the case where the BS/AP has
two, three, and four antennas. We collected the EVM data
from user and eavesdropper to plot their EVM Gap.

5G Network: Figure 13 plots the EVM gap distributions
when the BS has 2, 3, and 4 antennas. It can be seen that the
use of SPP creates a significant EVM gap between the user
and the eavesdropper. On average, the EVM gap is 30.0 dB
when the BS has 2 antennas, 31.4 dB when the BS has 3
antennas, and 28.6 dB when the BS has 4 antennas.

While the EVM gap is significant in all cases, the impact
of BS’s antenna number on the EVM gap does not agree
with our numerical results in Figure 5. We expected to see
that the more antennas the BS has, the larger the EVM gap
appears. However, this was not observed in our experimental
results. We believe this discrepancy can be attributed to the
channel feedback errors in real systems. In the simulation, we
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Fig. 13: EVM gap distribution in a 5G network.
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Fig. 14: EVM gap distribution in a WiFi network.

assumed that the channel knowledge is perfect at BS. In our
experiments, the channels are obtained via implicit feedback.
More antennas introduce a larger error in channel acquisition.
A better channel acquisition scheme can further improve the
EVM gap (and thus reduce the eavesdropping rate).

A crucial point on the CDF curves in Figure 13 is
EVM Gap = 3 dB. Recall that we use 3 dB as the threshold
to determine if an eavesdropper can decode the data packet
(see §III-B). Therefore, based on the results in Figure 13,
the projected eavesdropping rate is 3.1e-4 when the BS has
2 antennas, 9.3e-4 when the BS has 3 antennas, and 2.1e-3
when the BS has 4 antennas.

WiFi Network: Figure 14 shows the measured EVM gap
in the WiFi network. Similarly, we can observe that the use
of SPP creates a significant EVM gap between user and
eavesdropper. Numerically, the average of EVM gap is 21.3 dB
when the AP has 2 antennas, 22.2 dB when the AP has 3
antennas, and 22.3 when the AP has 4 antennas. In addition,
the probability of EVM gap less than 3 dB is 2.3e-3 when
the AP has 2 antennas, 6.2e-3 when the AP has 3 antennas,
and 9.4e-3 when the AP has 4 antennas. This indicates that
the probability of an eavesdropper successfully decoding the
data packets from an AP is 2.3e-3, 6.2e-3, and 9.4e-3 in these
three cases, respectively.
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Fig. 15: Impacts of eavesdropper’s CSI.
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Fig. 16: CDF of user’s EVM in a 5G network.

C. EVM Gap with Eavesdropper’s CSI

To answer Q2, we consider the case where the BS/AP has
4 antennas. The BS/AP sends data packets to one user in
the presence of one eavesdropper. Both user and eavesdropper
have one antenna. The BS/AP has the implicit channel knowl-
edge for both user and eavesdropper. For a fair comparison,
the BS/AP sends its data packets following the sequence as
shown in Figure 11: i) no SPP, ii) SPP without CSI, and iii)
SPP with CSI. We measured the EVM gap and plot the results
in Figure 15(a-b). It can be seen that the eavesdropper’s CSI is
indeed useful to increase the EVM gap. On average, the eaves-
dropper’s CSI can increase the EVM gap by 3.6 dB in the 5G
network and by 2.1 dB in the WiFi network. This experimental
observation agrees with the numerical results in Figure 10(a).
This confirms that the eavesdropper’s CSI is indeed useful to
increase the EVM gap between user and eavesdropper.

D. User Throughput Cost of SPP

The core idea of SPP lies in the design of transmission
and perturbation vectors. A coefficient η has been used
to allocate BS/AP’s power between the transmission vector
(for data transmission) and the perturbation vector (for anti-
eavesdropping). This means that SPP enables LPI communi-
cations at the cost of reducing user throughput. In this part,
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Fig. 17: CDF of user’s EVM in a WiFi network.

TABLE IV: EVM-to-MCS mapping in a 5G network [35].

EVM (dB) -2 -5 -10 -14 -16 -19 -20 -23 -26 -30 -33
Modulation order 2 2 6 6 6 6 8 8 8 10 10

Coding rate 1/3 2/3 1/3 1/2 2/3 5/6 2/3 5/6 8/9 13/14 17/18
Data rate (bps/Hz) 2/3 4/3 2 3 4 5 16/3 20/3 64/9 65/7 85/9

TABLE V: EVM-to-MCS mapping in 802.11ac [41].

EVM (dB) -5 -10 -13 -16 -19 -22 -25 -27 -30 -32
Modulation order 1 2 2 4 4 6 6 6 8 8

Coding rate 1/2 1/2 3/4 1/2 3/4 2/3 3/4 5/6 3/4 5/6
Data rate (bps/Hz) 0.5 1 1.5 2 3 4 4.5 5 6 6.7

we aim to answer Q3 by conducting experiments to evaluate
the throughput degradation caused by SPP.

EVM Increase: To evaluate the user throughput degrada-
tion, we measure the EVM at the intended user. Figure 16
presents our experimental results collected in the 5G network.
We observed that the use of SPP increases the intended user’s
average EVM by 3.0 dB (from -32.9 dB to -29.9 dB) when
the BS is equipped with 2 antennas, by 4.5 dB (from -33.2 dB
to -28.7 dB) when the BS is equipped with 3 antennas, and by
3.3 dB (from -33.4 dB to -30.1 dB) when the BS is equipped
with 4 antennas. Figure 17 presents our experimental results
from a WiFi network. We observed that the EVM increases
2.4 dB, 3.7 dB, and 2.7 dB in the three cases. We note that
the increased EVM depends on many factors such as power
allocation η, BS’ antenna correlation, and channel conditions.
At least, the above experimental results showcase that user’s
EVM increase is in an acceptable range.

Throughput Cost: To better understand the cost of SPP,
we now study the user throughput degradation caused by SPP.
We convert the measured EVM values to user throughput
following the classic system-level simulation methodology
[40]. Specifically, we use the EVM-to-MCS mapping values
in Table IV and Table V to calculate the user throughput for
5G and WiFi networks, respectively.

Figure 18 presents the calculated user throughput in a 5G
network when the BS is with and without SPP. We observed
that, on average, the use of SPP at BS decreases the user
throughput by 12% (from 9.0 to 7.9 bps/Hz) when the BS has
two antennas, by 17% (from 9.0 to 7.4 bps/Hz) when the BS
has three antennas, and by 13% (from 9.1 to 7.9 bps/Hz) when
the BS has four antennas. Similar user throughput degradation
was observed in the WiFi network. Specifically, Figure 19
presents the calculated user throughput in a WiFi network
when the AP is with and without SPP. On average, the use
of SPP at AP decreases the user throughput by 10% (from 5.3
to 4.8 bps/Hz) when the AP has 2 antennas, 18% (from 5.4
to 4.4 bps/Hz) when the AP has 3 antennas, and 14% (from
5.5 to 4.8 bps/Hz) when the AP has 4 antennas.

Table III summarizes our observed eavesdropping rate and
user throughput cost of SPP in both 5G and WiFi networks.

IX. DISCUSSIONS AND LIMITATIONS

SPP in Mobility: SPP and conventional MU-MIMO have
the same CSI requirements (e.g., channel acquisition and
channel coherence time). They share the same precoding
operations and only differ in precoding purposes. Therefore,
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Fig. 18: User throughput in a 5G network.
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Fig. 19: User throughput in a WiFi network.

SPP should be applicable to all scenarios where MU-MIMO
has been applied. We note that MU-MIMO has been widely
used in both Wi-Fi and 5G, indoor and outdoor, stationary
and mobile scenarios. We expect that SPP can work in those
scenarios as well. In our future work, we will experimentally
evaluate the performance of SPP in high-mobility outdoor
scenarios.

Application Scenario: While our design of SPP focuses on
the downlink transmission, SPP can also be used for safeguard-
ing uplink transmission as long as the user devices have two or
more antennas. Moreover, SPP is not limited to infrastructure-
based networks or OFDM-based wireless networks. It is also
applicable to ad hoc networks or non-OFDM communications,
as long as their data transmissions use QAM modulation.

SPP in FDD Systems: The channel acquisition design of
SPP was based on the channel reciprocity in TDD mode. A
question to ask is if SPP can work in FDD systems. We believe
so. FDD only affects implicit CSI feedback. Many works have
already shown that downlink channel can be inferred based on
uplink channel in FDD systems via model-based approach [42]
or learning-based approach [43], [44]. Therefore, SPP should
work in FDD mode.

SPP in Narrowband Communications: SPP is specifically
designed for broadband communication systems such as 5G
and Wi-Fi, both of which employ powerful LDPC codes. In
contrast, narrowband communication systems like Bluetooth,
ZigBee, and LoRa typically use lightweight coding schemes
(e.g., convolutional codes) or may not use any coding at
all. Moreover, devices in these systems often lack multiple
antennas, which are essential for SPP to function. As a result,
SPP is not applicable to these narrowband communication
systems.

Experimental Evaluation: Our current experimental eval-
uation is limited to a single-user, single-eavesdropper setup
in indoor environments. It is important to evaluate the perfor-
mance of SPP in more complex scenarios, including multi-
user, multi-eavesdropper cases and large-scale outdoor net-
works. Additionally, studying the effectiveness of SPP in low-

SNR regimes is a critical direction for future investigation.
These extensions will be explored in our future work.

X. RELATED WORK

SPP is a transmitter-side precoding technique that uses
different precoders for the pilot and data symbols in a frame.
Such an approach has never been explored in the literature.
However, it is related to the following PHY-layer LPI tech-
niques.

Beamforming: Beamforming has been widely used for en-
hancing PHY-layer security, and the prior work has produced
a large amount of results [7]–[26]). This work mainly focuses
on either maximizing the signal strength at the intended user
through beam steering [7], [9], [18], [21], or minimizing the
signal strength at eavesdropper through beam nullification [8],
[23], [24]. The former requires the channel/location informa-
tion of the user, while the latter needs the channel/location
information of the eavesdropper(s). SPP belongs to this re-
search category. However, the idea of differentiating the pilot
and data symbols in a frame for precoding has never been
explored before. Thus, SPP is a new precoding technique.

Preamble Randomization: SPP is also related to preamble
randomization [6]. The key idea is to use different preambles
following a pre-given pattern. To use this technique, transmit-
ter and receiver need to sync their randomization pattern at the
initialization stage, which may lead to security risks. On the
contrary, SPP does not need pre-shared knowledge between
transmitter and receiver.

Artificial Noise (AN): AN is another popular technique to
protect wireless communications against eavesdropping at the
PHY layer [2], [3], [45]–[56]. One approach of AN is injection
[2], [3]. When the receiver has the information of AN, it
can first pre-cancel the AN and then decode the data packet.
Assume that the eavesdropper does not know the information
of AN, the AN will prevent the eavesdropper from decoding
the data packet. AN is always used with beamforming [16],
[54]. In this case, a transmitter nullifies the noise beam
towards the user(s) and maximizes the noise beam towards
eavesdroppers. In contrast, SPP does not involve AN as it is
a purely precoding technique.

Other LPI Techniques: There are many other PHY-layer
LPI techniques to secure the communication privacy, such as
channel-based key generation [30], [31], spectrum spreading,
time/frequency hopping, and spatial-time-modulation [27]–
[29]. However, SPP differs itself from these techniques sig-
nificantly. For instance, spectrum sharing and frequency hop-
ping require pre-shared knowledge between transmitter and
receiver. Channel-based key generation does not explore the
spatial domain of wireless channels.

XI. CONCLUSION

In this paper, we introduced SPP for LPI wireless communi-
cations. SPP is a physical-layer precoding technique that does
not require any knowledge about eavesdroppers. SPP has been
designed based on the observation that a radio receiver can
demodulate a signal frame only if the pilot and data symbols
in the signal frame experience identical compound channels.
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The key idea behind SPP is using different weight vectors
for precoding the pilot and data symbols in the same signal
frame. We have implemented and evaluated SPP on 5G and
WiFi testbeds. Extensive experimental results have confirmed
the effectiveness and efficiency of SPP. We hope that SPP
will open up a new research line of MIMO, with the aim of
improving physical-layer security in addition to maximizing
the spectral efficiency for wireless networks.
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