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xDiff: Online Diffusion Model for Collaborative
Inter-Cell Interference Management in 5G O-RAN

Peihao Yan, Huacheng Zeng, and Y. Thomas Hou

Abstract—Open Radio Access Network (O-RAN) is a key archi-
tectural paradigm for 5G and beyond cellular networks, enabling
the adoption of intelligent and efficient resource management
solutions. Meanwhile, diffusion models have demonstrated re-
markable capabilities in image and video generation, making
them attractive for network optimization tasks. In this paper,
we propose xDiff, a diffusion-based reinforcement learning (RL)
framework for inter-cell interference management (ICIM) in O-
RAN. We first formulate ICIM as a resource allocation optimiza-
tion problem aimed at maximizing a user-defined reward function
and then develop an online learning solution by integrating a
diffusion model into an RL framework for near-real-time policy
generation. Particularly, we introduce a novel metric, preference
values, as the policy representation to enable efficient policy-
guided resource allocation within O-RAN distributed units (DUs).
We have implemented xDiff on a 5G testbed consisting of three
cells and a set of smartphones and evaluated its performance
in various small-cell scenarios. Extensive experimental results
demonstrate that xDiff outperforms state-of-the-art ICIM ap-
proaches, highlighting the potential of diffusion models for online
optimization of O-RAN. Source code is available on GitHub [1].

Index Terms—O-RAN, interference management, conditional
diffusion policy, deep reinforcement learning, online learning, 5G

I. INTRODUCTION

Open Radio Access Network (O-RAN) has emerged as a
critical architecture for future cellular infrastructure. As band-
width demands continue to surge, it is common that O-RAN
small cells operate on the same frequency band (i.e., frequency
reuse factor of 1) to maximize spectral efficiency [2]. However,
the small-cell architecture exacerbates inter-cell interference,
posing a significant challenge that requires careful interference
management to ensure reliable performance. While extensive
research exists on inter-cell interference management (ICIM),
the innovative architectural paradigm of O-RAN unlocks new
opportunities for deploying online learning approaches in real-
world RAN systems by leveraging the xApps hosted within the
Near-Real-Time (Near-RT) RAN Intelligent Controller (RIC).
These approaches can rapidly adapt to interference conditions
in the network to maximize the user-defined objectives while
respecting the quality of service (QoS) demands of users.
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Diffusion models have demonstrated remarkable capabilities
in content generation across diverse domains, such as produc-
ing high-quality images, videos, and text by iteratively refining
noisy data into structured output. This generative prowess
stems from their ability to model complex, high-dimensional
distributions, making them a powerful tool beyond traditional
applications. In the context of online interference management
in O-RAN, diffusion models offer a compelling fit due to
their capability to capture the stochastic nature of inter-cell
interference and adaptively refine resource allocation policies.
Despite their potential, diffusion models remain underexplored
in O-RAN applications, as existing interference management
strategies largely rely on conventional rule-based or learning-
based approaches. This underutilization highlights an oppor-
tunity to harness the unique strengths of diffusion models to
generate robust policies for the online optimization of O-RAN
systems.

In this paper, we study the ICIM problem in an O-RAN sys-
tem where adjacent small cells operate on the same frequency
band.1 We propose xDiff, a diffusion-based reinforcement
learning (RL) framework that generates policies to guide the
resource allocation at O-RAN distributed units (DUs). xDiff
operates as an xApp within the Near-RT RIC, periodically
querying DUs via the E2 interface to collect key performance
metric (KPM) and media access control (MAC) data. Based on
the KPM and MAC data observations, it dynamically refines
its policies to guide the resource allocation at individual DUs,
aiming to maximize a user-defined reward function while
accounting for inter-cell interference, time-varying channel
conditions, and dynamic user QoS demands.

One challenge in the design of xDiff lies in the time-scale
discrepancy between RIC and DU operations. The Near-RT
RIC updates its resource management policies based on the
KPM and MAC data from multiple DUs, operating at a near-
real-time scale of 10 ms to 1 s. In contrast, DUs operate at
a real-time scale of 1 ms, performing subframe-by-subframe
resource allocation based on the policies provided by the Near-
RT RIC. In addition to this time-scale mismatch, individual
DUs cannot cooperate in real time for joint interference
management due to inter-DU communication latency. Instead,
cooperation and coordination among DUs need to be achieved
through the policies generated by the Near-RT RIC.

To address this challenge, we introduce a new metric
called the preference value for each resource block (RB) at
every DU. This metric mathematically represents the policy

1We note that the frequency reuse factor of 1 is commonplace in real-
world cellular networks as the operators push the boundary of spectrum
utilization, especially in densely populated areas (see [3]–[5]).
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generated by the Near-RT RIC, enabling interference-aware
resource allocation at individual DUs. The numerical policy
representation serves as a crucial bridge between near-real-
time and real-time operations for efficient ICIM. For the Near-
RT RIC, it simplifies the output format of the diffusion model,
accelerating the convergence of its training process. This is
particularly important for online learning, as the diffusion
model must be continuously trained based on KPM and MAC
data observations to adapt to network dynamics, such as
interference conditions, time-varying channels, and fluctuating
user demands. For individual DUs, this numerical policy
representation acts as a set of scheduling-priority weights for
resource block scheduling. It can be seamlessly integrated
with existing DU scheduling algorithms, such as proportional
fairness (PF).

Another challenge within the design of xDiff is the inte-
gration of the diffusion model with reinforcement learning.
Unlike image and video generation tasks, where diffusion
models are trained offline on large datasets to generate high-
quality outputs without requiring continuous adaptation, online
policy generation in O-RAN requires that diffusion models
continuously adapt to dynamic network conditions. Moreover,
unlike static image/video datasets, the input distribution of
diffusion models in O-RAN evolves in real-time based on
user demands, interference levels, and network states. This
requires continuous training and updates of diffusion models
using streaming KPM and MAC data from DUs.

To address this challenge, we propose an efficient archi-
tecture that integrates a diffusion model with RL for adaptive
policy generation. Specifically, we use a conditional denoising
diffusion probabilistic model (DDPM) to generate policies and
employ a critic with double Q-learning networks to evaluate
them. One difficulty lies in effectively aligning the diffusion
model’s generative process with the policy optimization ob-
jectives of Q-learning. To overcome this, we introduce a joint
training approach that combines the Q-learning loss with the
denoising loss. By combining the two losses, the diffusion
model learns to generate policies that not only capture the
underlying data distribution but also optimize the performance
based on the critic’s feedback. Moreover, this architecture
leverages the strengths of both policy-based and value-based
models, reducing the number of denoising steps required by
the diffusion model. This makes it well-suited for Near-RT
operations.

We have integrated xDiff into the OpenAirInterface (OAI)
software suite and evaluated its performance on a 5G testbed
consisting of three cells and a set of smartphones. Ablation
studies show that the diffusion model plays a key role in
generating policies to improve network performance in the
face of inter-cell interference. Extensive experimental results
demonstrate that xDiff is robust in Near-RT policy generation
and outperforms the state-of-the-art (SOTA) RL approaches,
showcasing the potential of diffusion models for online opti-
mization in O-RAN.

This work advances the state-of-the-art as follows.
• We propose a new metric called preference value as the pol-

icy representation for the Near-RT RIC to manage inter-cell
interference. This compact representation not only simplifies

TABLE I: 5G network ICI approaches in the literature.
Reference Objective Key Idea OTA? UE RIC?
eICIC [13]
CoMP [14]
LTE-Adv [19]

Spectrum Efficiency Almost Blank Subframe
(ABS) ✓ ✗ ✗

CoaCa [39] Maximize Streams Antenna Beamforming ✓ [40] ✗

CSRS [41] feICIC FAP clustering ✗ ✗ ✓

2-Layer IC [42] Improve Link Capacity RCGCA ✗ ✗ ✓

IAIS [24] Enhance reliability Interference prediction ✓ [43] ✓

ChARM [36]
IM-rApp [23] Improve Throughput Machine Learning

(Prediction) ✓ N/A ✓

MLMCOS [25] Maintain High QoE ML Classification ✗ [44] ✓

DRL-IM [20]
mmLBRA [45]
Dynamic-IC [28]

Increase Sum-Rate Reinforcement Learning ✗ ✗ ✓

xDiff (ours) Improve System QoS Diffusion Policy ✓ ✓ ✓

Note: OTA = Over-The-Air.

the training process of the diffusion model but also seam-
lessly integrates with existing DU scheduling algorithms.

• We propose a framework that integrates diffusion model
with RL. It appears to be robust and efficient in maximizing
user-defined reward functions in the presence of inter-cell
interference.

• Extensive experimental results demonstrate that xDiff out-
performs the SOTA ICIM approaches, including deep Q-
learning and actor-critic RL.

II. RELATED WORK

Interference is a fundamental problem in wireless networks.
Even within cellular networks, the literature already has a
large body of work on interference management, encompass-
ing power-domain methods [6], [7], time-domain techniques
[8], [9], frequency-domain approaches [10], spatial-domain
solutions [11], and code-domain strategies [12]. Since it is
impossible to review all existing work, our survey focuses on
ICIM in 5G and O-RAN.

ICIM in 5G and O-RAN. A number of ICIM techniques
have been proposed for 4G/5G cellular networks, such as
enhanced inter-cell interference coordination (eICIC) [13],
coordinated multi-point (CoMP) [14], and dynamic power
control [15]. In recent years, the use of massive MIMO,
beamforming, and carrier aggregation technologies has gained
increasing attention for interference suppression [16]–[18].
Meanwhile, both data-driven optimization approaches [19],
[20] and learning-based techniques [10], [21], [22] have ad-
vanced in increasingly sophisticated forms to enhance the
management of inter-cell interference, leading to significant
improvements in spectrum utilization for 5G networks [17],
[23], [24].

The new architecture of O-RAN presents opportunities to
deploy intelligent solutions for ICIM in realistic 5G networks,
driving the rapid development of DNN models [24]–[27],
RL solutions [28]–[32], and graph-based models [33] for
interference prediction and management. The flexibility of
O-RAN further enables inter-cell coordination via the RIC
for interference mitigation [34]–[38], enhancing 5G network
resilience, robustness, and scalability.

Although the literature contains a large body of work on
ICIM, little progress has been made in the design of online
learning solutions and their validation in realistic networks.
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Fig. 1: Inter-cell interference among O-RAN small cells.

xDiff fills this gap. Table I highlights the most relevant work
and positions xDiff uniquely in the literature. Specifically, xDiff
differs from prior work in that it is the first to use diffusion
policies for ICIM and has been validated on realistic 5G
testbeds.

xApps for Resource Allocation in O-RAN. Many xApps
have been developed to optimize various network performance
metrics—such as spectral efficiency, latency, fairness, and
reliability—by dynamically enforcing resource allocation poli-
cies at DUs (see, e.g., [34], [46]). Among these approaches,
online learning [47], particularly RL [28], [45], has emerged
as an appealing technique for xApps due to its ability to
adaptively refine resource allocation policies in response to
time-varying network conditions. Actually, a considerable
volume of work has explored RL for network management
and optimization in O-RAN, including network slicing [32],
[48], flow scheduling [49], MCS selection [50], [51]. However,
despite these prior efforts, limited progress has been made in
developing RL-based xApps for ICIM in O-RAN. xDiff fills
this gap by introducing a novel RL-based xApp for ICIM.

Diffusion Policy for Reinforcement Learning. Diffusion
models, originally developed for image and video synthesis
[52], have recently gained attention in RL for their ability to
model complex, high-dimensional policy distributions [53]–
[55]. Unlike traditional RL approaches that rely on determin-
istic or stochastic policy networks, diffusion models leverage
a generative process that iteratively refines noisy inputs into
structured outputs, enabling more expressive and flexible pol-
icy representations. In an RL framework, diffusion models can
be used to learn a distribution over optimal actions, enhancing
agents’ adaptation in dynamic environments. For instance,
pioneering work has integrated diffusion models with RL to
model complex distributions of possible actions [56]–[58],
make multi-step predictions about the next state [59], [60],
and expand the database [61]. To the best of our knowledge,
diffusion models have not been explored for online resource
optimization in O-RAN.

III. PROBLEM STATEMENT

Consider an O-RAN system as shown in Fig. 1, where the
small cells operate on the same frequency band for both uplink
and downlink transmissions. Each small cell is equipped with
one RU and one DU. A central RIC is connected to all DU de-
vices for remote control and management. Due to the physical

distance between RIC and DU, the control and management of
DUs can only be executed at the Near-RT level. The primary
role of RIC in this architecture is to generate Near-RT policies
that guide resource allocation operations in individual DUs,
optimizing the user-defined reward function. For this network
setting, we have the following two notes.

Frequency Reuse. Given the limited availability of spec-
trum, frequency reuse is essential for accommodating the
growing demand for wireless services. By reusing the same
frequency in adjacent cells, operators can deploy a higher den-
sity of base stations, such as small cells, to improve coverage
and capacity without requiring additional spectrum resources.
In fact, real 5G networks commonly reuse the same frequency
bands for neighboring cells—a practice known as frequency
reuse or universal frequency reuse (Reuse-1). Ericsson’s study
shows that Reuse-1 will play an important role in meeting the
growing capacity demands in dense 5G networks and has the
potential to double the network capacity compared to Reuse-2
[62]. The aggressive frequency reuse calls for efficient and
intelligent interference management techniques.

Multi-DU Multi-Cell Architecture: The flexibility of O-
RAN allows for the support of multiple cells (i.e., multiple
RUs) using either a single DU or multiple DUs. In the
former case, signals from all RUs are jointly processed at
a single DU, making it well-suited for CoMP and massive
MIMO transmissions. However, this approach places a heavy
computational burden on the DU and requires high-capacity
front-haul links, posing challenges for practical deployment.
In the latter case, PHY-layer signal processing is performed
independently at individual DUs, with coordination managed
at the Near-RT RIC. While this architecture does not fully
optimize network capacity, it offers great flexibility in network
operation and maintenance. In this work, we consider the
multi-DU architecture for our design.

A. Experimental Observations

To understand the impacts of inter-cell interference, we
conduct experiments on an OAI testbed that comprises two
cells and two commercial smartphones (see details in §V).
The core network generates persistent downlink data traffic at
50 Mbps for smartphone 1 and at 60 Mbps for smartphone
2 using iperf. The real throughput (TP) and queue delay
of both smartphones were measured at their respective DUs.
Fig. 2 presents our observations in three cases.
• Case I: We intentionally avoid inter-cell interference by

assigning the two cells to different frequency bands: one on
n78 and the other on n41. Fig. 2a presents our measurement
results. Evidently, the two smartphones maintain stable and
reliable link connections with an acceptable delay of 1 ms.

• Case II: We assign both cells to the same frequency band,
i.e., n78. Fig. 2b shows our measurement results. It can
be seen that smartphone 2 experiences an unstable link
connection with significant queue delays (up to 5 s). This
connection instability is caused by interference from the
other cell.

• Case III: In contrast to Case II, we use the RIC to deploy
a simple resource allocation policy for ICIM: cell 1 uses
0–50 RBs while cell 2 uses 51–106 RBs. Fig. 2c presents
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(a) No inter-cell interference.
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(b) W/o policy from RIC.
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(c) W/ a simple policy from RIC.
Fig. 2: Impacts of inter-cell interference on user throughput (TP) and queue delay.

our measurement results in this case. It shows that both
smartphones maintain stable connections with acceptable
delay.

These experimental results demonstrate the destructiveness of
inter-cell interference and showcase the effectiveness of the
RIC policy in ICIM for meeting users’ throughput and delay
demands.

B. Reward-Based Formulation

The objective of this work is to develop an xApp for
Near-RT RIC that can generate an efficient policy to guide
the resource allocation of DUs in the presence of inter-cell
interference. Denote K as the set of small cells, with RUk

and DUk denoting its radio and distributed units. Denote Uk
as the set of UEs served by DUk, with U =

⋃
k∈K Uk denoting

the set of all UEs in the network. While DU performs resource
allocation subframe-by-subframe at the time scale of 1 ms, the
policy from the RIC updates at a slower pace, with the time
scale from 10 ms to 1 s.

For UE i ∈ U , denote Pi as its throughput demand. Denote
ρi(t) as its achieved throughput in time slot t, where t =
0, 1, 2, . . . . If ρi(t) ≥ Pi, then the UE’s throughput demand
is met and the regret is zero; otherwise, we define the regret
as its normalized throughput deficit, i.e., Pi−ρi(t)

Pi
. Combining

these two cases, we model the regret of UE i in time slot t as
follows: max

(Pi−ρi(t)
Pi

, 0
)
.

Similarly, for UE i ∈ U , denote Di as its delay demand.
Denote τi(t) as the achieved average delay of UE i’s data
packets in time slot t. If τi(t) ≤ Di, then the UE’s delay
demand is met and its delay regret is zero; otherwise, we define
the delay regret as its normalized delay deficit, i.e., τi(t)−Di

Di
.

Combining these two cases, we model the delay regret of UE
i in time slot t as follows: max

( τi(t)−Di

Di
, 0
)
.

Following the convention, we use reward instead of regret
as our optimization objective function. To do so, we define the
reward value as the inverse of the regret value. Specifically,
let r[p]k (t) denote the throughput reward of small cell k in time
slot t, and r

[d]
k (t) denote its delay reward. Then, we have:

r
[p]
k (t) =

∑
i∈Uk

min
(ρi(t)− Pi

Pi
, 0
)
, (1)

r
[d]
k (t) =

∑
i∈Uk

min
(Di − τi(t)

Di
, 0
)
, (2)

where both r
[p]
k (t) and r

[d]
k (t) are non-positive values.

To model the varying QoS demands of different UEs,
we introduce a non-negative vector to denote the weights
of their throughput and delay rewards. Specifically, let λ

[p]
k ,

λ
[d]
k denote the throughput and delay weights in small cell

k. Network operators can use these weights to adjust the
priorities of throughput and delay during online optimization.
Incorporating the weights, the QoS metric, representing the
total reward of all UEs in all cells, can be written as:

r(t)=
∑
k∈K

(
λ
[p]
k r

[p]
k (t) + λ

[d]
k r

[d]
k (t)

)
. (3)

Based on the above reward functions, we formulate this
problem as a Markov decision process (MDP). The objective
is to find the optimal policy π∗ that maximizes the expected
cumulative reward (discounted sum of rewards), i.e.,

π∗ = argmax
π

E

[ ∞∑
t=0

γtr(t)

]
. (4)

In this optimization problem, DUs are the environment;
Near-RT RIC is the AI agent that makes policy decisions. UE
QoS demands Pi and Di, i ∈ U , are given values that may
change over time. UE QoS metrics ρi and τi are observable
variables. Throughput and delay weights, λ

[p]
k and λ

[d]
k , are

given constants for all k ∈ K.

IV. XDIFF: DESIGN

We propose xDiff to address the optimization problem in
Eq. (4). Fig. 3 shows the key components of xDiff in the
architecture of O-RAN. xDiff is an xApp residing within
the Near-RT RIC, generating policies to guide the resource
allocation at individual DUs. It should be stressed that the
policy is generated by xDiff in Near-RT fashion (in the time
scale of 10 ms to 1 s), while the resource is allocated at the
DUs in real-time fashion (every one millisecond). Model input,
output, and structure are three key components of xDiff, which
we describe as follows.

Model Input. xDiff obtains the RAN state information from
the DUs via the E2 interface and uses the information as
the input to infer the policy for the resource allocation of
individual DUs. The RAN state information includes both
KPM and MAC data at each DU. Table II lists the KPM and
MAC data that are used as input to xDiff. Denote B as the
number of (KPM and MAC data) samples that xDiff obtains



5

xApp

xApp

xApp

SqliteDB

Monitor

xApp

xApp

xApp

SqliteDB

Monitor

E2

O-CU

O-RAN

Core

O-DU

O-DU

O-DU

O-RU

O-RU

O-RU

O-CU

O-RAN

Core

O-DU

O-DU

O-DU

O-RU

O-RU

O-RU

https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL/blob/master/agents/diffusion.py

Diffusion policies as an expressive policy

 class for offline reinforcement learning

Near-RT 

RIC

Update Qϕ(st,at) 

Generated policy: 

Preference Values

st

Reward

Q-Learning

Diffusion Model

Current Q value Target Q value

at
0

Diffusion process

at
Kat

kat
k-1

q(at
k|at

k-1)

pθ (at
k|at

k-1)

at
k-1

Denoising process
at+1

Q1
Q2

Q1
Q2

st

at

st+1

at+1

at
k

k step embeding

L(θ)=Ld(θ)-ηQ(θ)

Denoising loss function

LQ=E[(y-Qϕ(st,at))
2]

Q Loss Function

Fig. 3: Architecture of xDiff.

TABLE II: The list of KPM and MAC data that xDiff obtains
for each UE.

Data UL or DL? Explanation

KPM
data

Per-UE TP DL Average data rate achieved by UE
Per-UE delay DL Delay of SDU after being requested.
Per-UE PRBs DL # of PRBs assigned to each UE in 10 ms.

MAC
data

PUSCH SNR UL Quality of signal transmitted by UE.
PHR UL Max Tx power - current usage power.
MCS DL&UL Modulation index and coding rate for data.
BLER DL&UL Percentage of blocks received with errors.
Current TBs DL # of Transport Blocks being Tx-ed.
Scheduled RBs DL # of PRBs scheduled for transmission.

per second from one DU. We observed that B varies from 100
to 1000 samples per second.

Model Output. The model output is a resource allocation
policy for individual DUs, which plays a critical role in
the management of inter-cell interference. The time-scale
discrepancy between RIC and DU operations makes it in-
feasible for RIC to directly manage resource allocation for
individual DUs, necessitating an efficient policy representation
to bridge the near-real-time and real-time operations. The
policy representation should capture both short-term and long-
term network dynamics, including interference levels, channel
conditions, user mobility, and user demands, to guide real-
time resource allocation at DUs. Additionally, it should be
lightweight to minimize communication overhead on the E2
interface. To address these challenges, we propose an elegant
mathematical formulation as the policy representation, which
will be explained in §IV-A.

Policy Agent Structure. Even with a well-defined policy
representation, the policy agent design is a challenging task
as it must generate a policy in a near-real-time manner.
The policy agent must rapidly adapt to network dynamics
while meeting stringent latency requirements. Additionally, it
must ensure fast policy convergence, allowing the learning
algorithm to quickly adjust to time-varying network conditions
without prolonged training periods. Furthermore, due to the
physical separation between RIC and DU, the policy agent
in RIC operates with partial observability and incomplete
network information, necessitating an efficient learning archi-
tecture for policy generation. To address the above challenges,
we propose a diffusion model for policy generation within an
RL framework, as shown in Fig. 3. Details will be presented
in §IV-B.

A. Policy Representation

Each DU is responsible for the subframe-by-subframe (real-
time) resource allocation of its own cell, in the presence of
inter-cell interference. Due to the inter-DU communication
latency, joint resource allocation cannot be achieved in a real-
time fashion. Therefore, the DUs need to be coordinated by
the Near-RT RIC for interference-aware resource allocation.

Hard Policy. A natural approach for the Near-RT RIC to
coordinate resource allocation is by controlling the use of
resource blocks at each DU. Specifically, the policy agent
generates a preference value for each UE in each cell on each
RB, i.e.,

p(DUk, UEi, RGBj) =


1, For DUk , allocate RBj to UEi,

0, No preference, decide it by DUk ,

−1, For DUk , do not allocate RBj to UEi,

(5)
where i ∈ Uk, k ∈ K, and j ∈ J . For instance, J =
{1, 2, . . . , 106} for 5G NR with 40 MHz bandwidth. Through
learning the interference patterns in the network, the policy
agent intends to use “1” and “-1” as the recommendation
values to avoid strong inter-cell interference on the same RB.
If there is no strong inter-cell interference on an RB, the policy
agent does not make a recommendation for this RB, and the
DU can allocate this RB using its own scheduling algorithm.
The Near-RT RIC sends the generated recommendation values
to each DU on the E2 interface. Upon receiving the recom-
mendation values, DUk follows the recommendation for its
resource allocation.

While this policy has a simple representation, it does not
perform well in practice as confirmed by our experiments. We
observed that DUs frequently struggled to find sufficient RBs
for UE scheduling, resulting in a high delay of UE commu-
nications. This may be attributed to its hard recommendation
reflected by its discrete policy representation values, which
explicitly excludes a subset of RBs for the UEs and thus limits
the scheduling flexibility of DUs.

Soft Policy. Based on the experimental observations, we
relax the policy representation values from discrete numbers
to continuous numbers within the range from -1 to 1, i.e.,

p(DUk, UEi, RBj) ∈ [−1, 1]. (6)
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A large value means that an RB has a high preference for the
UE, while a small value means the RB has a low preference for
the UE. We thus call the policy representation as preference
values. This soft policy allows for flexible real-time resource
allocation at the DUs while respecting the recommendation
from the policy agent.

Experimental Comparison. We conduct experiments on
a 5G O-RAN testbed that comprises three cells and ten
smartphones (see §V for details). Each UE maintains a con-
sistent position throughout the experiments while generating
continuous data traffic demands. This controlled scenario
allows us to isolate the impact of policy variations without
mobility-induced effects. The hard and soft policy agents
share the same model structure as described in §IV-B. Fig. 4
presents our measured reward. It is evident that the soft policy
representation significantly outperforms its hard counterpart,
echoing the above analysis.

B. Diffusion-Based Policy Generation

Based on the above policy representation, we propose a
diffusion-based RL framework for online policy generation.

Why Diffusion Model for RL? Recently, diffusion-based
RL has emerged as a strong candidate for the online decision-
making process [58], [63]. It is well-suited for ICIM in O-RAN
due to its ability to efficiently explore high-dimensional policy
spaces while maintaining smooth and adaptive policy evolu-
tion. Unlike conventional RL approaches that may struggle
with non-stationary interference patterns and dynamic resource
constraints, diffusion-based RL leverages generative modeling
techniques to learn a diverse distribution of optimal policies.
This allows the policy agent to generalize across different
network conditions and adapt to time-varying interference
scenarios.

Consider two UEs, UE1 and UE2, for example. Each
UE belongs to a different small cell. To mitigate inter-cell
interference, multiple optimal resource allocation solutions
may exist. For example, (UE1→RB1, UE2→RB2) is an
optimal allocation; (UE1 → RB2, UE2 → RB1) is another
optimal solution. As illustrated in Fig. 5, the diffusion model is
particularly well-suited for capturing the complex distribution
of optimal actions. It outperforms conventional Gaussian poli-
cies by enabling more accurate policy generation and offering
faster convergence.

Diffusion-Based RL Framework. This framework takes
the KPM and MAC data in Table II as its input to generate

Diffusion model policy
Gaussian policy

𝜋(∙ |𝑠)

P

P1 P2 P3

Fig. 5: Gaussian modeling vs. diffusion modeling.

p(DUk, UEi, RGBj) for all k ∈ K, i ∈ Uk, and j ∈ J .
As shown in Fig. 3, our RL framework integrates a diffusion
model with double Q-learning networks to generate resource
allocation policies (i.e., preference values). The diffusion
model acts as the policy generator, while the Q-learning
networks serve as the evaluator and critic to ensure policy
quality and stability. We train the diffusion model using the
Q-values to progressively denoise the preference values. At
each denoising step, the model refines its output. We apply
the principle of “Guidance for Maximizing the Q-Function”
[64], [65], where the diffusion model prioritizes decisions that
maximize the expected future reward (as indicated by the
Q-value) during the optimization iterations. By adding this
guidance at each iteration, the diffusion model is trained to
maximize the reward.

Double Q-learning. In the diffusion-based RL framework,
we use a value-based model as the evaluator (critic), which
generates values to guide the training of the diffusion model.
Traditional Q-learning algorithms select the maximum target
Q-value to update the current Q-value. This may lead to
overestimation of the Q-value due to noise and bias in data
samples. To address this issue, we employ double-deep Q-
learning networks to predict the Q-value of the policy gen-
erated by the diffusion model. Of these two Q-networks, one
predicts the current Q-values while the other predicts the target
Q-value.

To enhance the learning stability and efficiency, follow-
ing the design in [66], we adopt two current Q-networks
(Qϕ1

, Qϕ2
) for Q-value prediction and two target networks

(Qϕ′
1
, Qϕ′

2
) to provide stable reference for current Q-value

prediction. The smaller value from the two target networks
is used to compute the target Q value. This redundancy
helps reduce Q-value overestimation. Denote Qϕ′

i
(st+1,a

0
t+1)

as the predicted value from the target Q network, where
a0t+1 ∼ πθ′ . Then, we compute the target Q-value as follows:
y = r(st,at)+γmini=1,2 Qϕ′

i
(st+1,a

0
t+1), where r(st,at) is

the reward of taking action at at state st and γ is the discount
rate. Based on the target Q value, we optimize ϕi, i.e., the
weights in Qi, by minimizing the following loss function:

LQ(θ)=E(st,at,st+1)∼D

[
(y −Qϕi

(st,at))
2
]
, i ∈ {1, 2}, (7)

where D is the online dataset collected under policy πθ.
Diffusion and Denoising Process. The training process of a

diffusion model involves corrupting data with Gaussian noise
at increasing levels and training a DNN to predict the added
noise at each step. By minimizing the difference between the
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Fig. 6: Iterative sampling process of diffusion model.

predicted and actual noise, the model implicitly learns the
score function, enabling it to generate new samples by revers-
ing the diffusion process. The inference process of a diffusion
model starts with pure Gaussian noise and iteratively denoises
it using the trained model’s noise predictions. By reversing the
diffusion process step by step, it gradually reconstructs a high-
quality sample from the learned data distribution. When using
diffusion model within an RL framework, it should be stressed
that there are two different timesteps: one for diffusion noise-
adding/denoising steps, and the other for RL iterations. We
use superscript k ∈ {1, . . . ,K} to denote diffusion step index
and subscript t ∈ {1, . . . , T} to denote RL iteration index.

In RL, the policy/action must be generated based on the
current system state. This conditioning process is critical
for policy generation. Therefore, we define the conditional
diffusion policy as follows:

πθ(a | s) = pθ(a
0:K | s) = N (aK ; 0, I)

K∏
k=1

pθ(a
k−1 | ak, s),

(8)
where a and s are the action and state of an RL process, with
k denoting its step index. N (·; ·, ·) denotes Gaussian noise
following the given parameters. Generally speaking, pθ(ak−1 |
ak, s) could be modeled as a Gaussian distribution.

To solve the multi-optimization problem, we follow [55]
by parameterizing pθ(a

k−1 | ak, s) as a conditional noise
prediction model (see Fig. 6). Once the final action aKt
is obtained, it is used to determine the next action at+1.
The preference values update the objective function O(s,a),
ensuring that the action selection process accounts for real-
time network conditions. The optimization of the diffusion
model is driven by a loss function, which balances denoising
reconstruction and policy learning.

Following the Denoising Diffusion Probabilistic Model
(DDPM) in [52], we train our conditional ϵ-model—a Multi-
Layer Perceptron (MLP) parameterized by θ—based on the
below loss function:

Ld(θ)=Ek∼U(K),ϵ∼N (0,I)

[
||ϵ−ϵθ(

√
ᾱka+

√
1−ᾱiϵ, s, k)||2

]
,

where ϵ is the noise, U(K) is a uniform distribution over the
discrete set as {1, . . . ,K} and D denotes the data samples in
the database.

To improve learning efficiency, we inject the Q-value
function from the Q-learning networks into the denoising
process. Specifically, following the approach in [55], we define

Algorithm 1 xDiff: Diffusion-based RL algorithm.
Initialize: Policy network πθ; critic networks Qϕ1

, Qϕ2
; target

networks πθ′ , Qϕ′
1
, Qϕ′

2
.

Input: Action at; current state st; and next state st+1.
Output: preference value at+1.
1: // Database initialization
2: D ← ∅
3: for b ∈ {0, . . . , batchsize} do
4: Generate a0t ∼ πθ′(at|st) by Eq. (8).
5: Send a0t to RAN and get st+1 and rt from RAN
6: D ← D ∪ {st,a0t , rt, st+1}
7: end for
8: // Online policy learning and generation
9: for each iteration do

10: Repeat steps 4–6
11: Sample mini-batch B = {(st,at, rt, st+1)} ∼ D
12: Sample a0t+1 ∼ πθ′(at+1|st+1) by Eq. (8).
13: Update Qϕ′

1
and Qϕ′

2
based on Eq. (7)

14: Update policy by minimizing Eq. (9)
15: θ′ ← ρθ + (1− ρ)θ′

16: ϕ′
i ← ρϕi + (1− ρ)ϕ′

i for i ∈ {1, 2}
17: end for

Q(θ) = Es∼D,a0∼πθ[Q(s,a0)]
E(s,a)∼D[|Q(s,a)|] . Then, the loss function that we

use to train the diffusion network is as follows:

L(θ) = Ld(θ)− ηQ(θ), (9)

where η is a hyperparameter that balances the two loss terms.
η plays a key role in model training. We will study it through
experiments.

Sampling Process. Sampling refers to the process of
generating new action (i.e., new policy for DUs’ resource
allocation) by reversing a noise-injection process, gradually
refining random noise into a coherent output by following
learned diffusion steps. Fig. 6 illustrates our sampling process.
Initially, the input includes randomly generated noise, state
st+1, and the embedding of denoising step index k. The
state information acts as a conditional guide, directing the
network through iterative denoising processes to generate the
action/policy at+1 for state st+1.

Summary of Workflow. The complete workflow of xDiff
is detailed in Alg. 1. The parameter ρ controls the soft
update of target networks using exponential moving average
(EMA), ensuring a gradual adaptation to the latest policy while
maintaining stability. A small ρ (e.g., 0.05) prevents abrupt
changes.

C. Policy-Guided Resource Allocation at Individual DUs

The policy generated by xDiff must be taken by the DUs to
guide their resource allocation. Fig. 7 shows the architecture of
an DU, where a real-time scheduler operates at the MAC layer
for resource allocation and user scheduling. In what follows,
we first introduce the conventional UE scheduling algorithm
in DU, and then explain how the policy generated by xDiff is
integrated into the existing scheduling algorithm.
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Fig. 7: Architecture of 5G DU.

Proportional Fairness (PF) Scheduler. PF is a popular
scheduler that has been widely used in real-world cellular
networks. It allocates resources to users based on a balance
between maximizing throughput and ensuring fairness, by
giving more resources to users with higher channel quality
while preventing the system from favoring only the best users.
It aims to optimize network performance while maintaining
equitable access for all users. Specifically, the PF scheduler
calculates a metric for each user, which is a ratio of their in-
stantaneous throughput (or CQI) to their historical throughput.
This metric is used to decide which user should be allocated
resources. The metric for user i at time slot t is:

PF Metrici(t) =
ri(t)

Ri(t− 1)
, (10)

where ri(t) is the instantaneous achievable data rate of user i
at time t, which is predicted based on the CQI feedback. Ri(t)
is the average historical throughput of user i in the previous
time slot. The PF scheduler computes the PF metric for each
user in each time slot, and selects the user with the highest
PF metric for resource allocation.

Integrate Diffusion Policy into PF Scheduler. The MAC
scheduler receives the policy (i.e., preference values) generated
by the diffusion model via the E2 interface and allocates RBs
to UEs according to the policy. Specifically, for each UE,
the scheduler aims to utilize the RBs with a high Preference
Value while avoiding those with a low Preference Value. The
scheduler achieves this objective through the below two steps.
• Step I: Adjust PF Metric. Recall that p(DUk, UEi, RBj)

indicates the UEk’s preference for RBj . A negative value
means that this RB is not favorable due to the inter-cell in-
terference. We wish to exclude those RBs when calculating
a UE’s PF Metric. To do so, we define a weight for UE i
by letting wi =

|{j∈J :p(DUk,UEi,RBj)<0}|
NRB

. It represents the
percentage of favorable RBs for UEi. Then, we incorporate
the UE weight into the PF metric as follows.

PF Metrici(t) =
ri(t)

Ri(t− 1)
× wi. (11)

We note that, since DUs perform resource allocation inde-
pendently, we omit DU index k for simplicity.

• Step II: RB Allocation. The scheduler first prioritizes all UEs
based on their PF Metric values and then allocates RB for
each UE based on their priority. For each selected UE, the
scheduler assigns RBs with the highest preference values for
transmission. This allocation process continues iteratively
until either the transmission demand of the current UE is
fulfilled or all available RBs have been allocated.

COTS UEs

5G Core O-CU

GPSDO

Near-RT RIC + xAPP

Network Switch HDMI 
Switch

O-DU-O-RU

X310

N310

O-RAN Control Hub Distributed O-RU Setup

B210

Fig. 8: A 5G O-RAN testbed that includes three RUs and tens
of smartphones.

V. IMPLEMENTATION

Testbed Setup. Fig. 8 illustrates our O-RAN experimental
testbed, which consists of a 5G core network, one CU, three
DUs, three RUs, Near-RT RIC, and ten commercial smart-
phones. The system operates on the n78 frequency band. The
center frequency is 3319.68 MHz, and the subcarrier spacing
is 30 kHz. The testbed is configured so that all smartphones
can access the Internet. The three RUs were implemented
using different USRP devices—N310, X310, and B210—to
emulate the diversity of commercial RU equipment. Both
N310 and X310 support 2x2 MIMO, while B210 supports 1x1
transmission only. The three USRP are synchronized in both
frequency and time for TDD operations on the n78 band. The
ten smartphones are from various vendors, including Google
Pixel, OnePlus, Motorola, Xiaomi, and Samsung.

OpenAirInterface (OAI) Modifications. We use OAI
[67] 5G RAN for our experiments. The DU then assigns
a Radio Network Temporary Identifier (RNTI) to each of
the newly admitted UEs as identification. OAI only sup-
ports the PF algorithm, which cannot meet our requirements.
Therefore, we modified the downlink scheduler functions in
oai/openair2/LAYER2/NR_MAC_gNB and the E2 inter-
face in oai/openair2/E2AP/RAN_FUNCTION.

Near-RT RIC. We use Mosaic5g Flexric [68]–[70] as our
near-RT RIC. Flexric supports E2 Node agent, near-RT RIC,
and xApp. It provides a flatbuffers encoding/decoding scheme
as an alternative to ASN.1. We use SWIG as an interface
generator to enable C/C++ and Python development for xApps.
We built our xApp with E2AP v2.03 and KPM v2.03.

xDiff Implementation. We built an xAPP within the Near-
RT RIC for our conditional diffusion model using a fully-
connected DNN following the DDPM method in [52]. To ac-
celerate the online training process of the diffusion model and
meet the timing requirements, we grouped the 106 RBs into
10 clusters for the diffusion model to generate the preference
values. We employed a DNN with a 4-layer MLP and mish
activations for the diffusion model. We use 256 hidden units
for all layers. The input of ϵ(θ) is the concatenation of the last
step action vector, the current state vector, and the sinusoidal
positional embedding of timestep k. The output of ϵ(θ) is the
predicted residual at diffusion timestep K. For the double Q-
learning networks, we adopt a similar MLP architecture as
the diffusion policy; however, we use 4-layer MLPs with 256
hidden units. For xDiff, we need to define a BWP for each UE,
including its starting position and bandwidth size. The starting
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Fig. 9: Illustrating the two scenarios of our experiments.

position can be obtained through xDiff, while the bandwidth
size is determined by the preference values and traversing
through all the RBs.

Open-Source Code: The source code of xDiff is available
on GitHub [1].

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of xDiff in
lab and building scenarios as shown in Fig. 9. We use three
metrics for the evaluation: throughput, delay, and the defined
reward function. We note that the reward value is non-positive
as it was defined to be the inverse of throughput/delay regret.
We would like to answer the following questions through the
evaluation.
• Q1: How are KPM and MAC data affected by inter-cell

interference? This is important as xDiff generates Near-RT
ICIM policy based on KPM and MAC data.

• Q2: Is diffusion model critical for xDiff? What are the best
values for its key parameters?

• Q3: How does xDiff perform compared to the state-of-the-
art ICIM solutions?

A. A Case Study

We consider a simple network in the lab scenario as a case
study to examine the operations of xDiff.

Two-Cell Case. We first consider a network with two cells,
each serving a single smartphone. The core network generates
persistent data traffic for the two smartphones at 50 Mbps and
60 Mbps, respectively. We aim to observe the MAC-layer data
and evaluate its performance under inter-cell interference. To
do this, we first activate smartphone 1 at time moment T1,
followed by smartphone 2 at time moment T2. We collect
smartphone 1’s MAC-layer data at its serving DU, including
its Power Headroom (PHR), Channel Quality Indicator (CQI),
Modulation and Coding Scheme (MCS), BLER, throughput
(TP), and queueing delay.

Fig. 10 presents our measurement data, with the time
moments T1 and T2 marked along the x-axis. We make the
following observations. Between T1 and T2, since only one
smartphone is active, there is no inter-cell interference. As a
result, smartphone 1 achieves ideal connection performance.
During this period, it maintains a stable link with high PHR

50

20
PHR

15

5CQI

25

0

MCS

0.2

0.0

0 2 6 8

Time (s)

T1 T2

TP

Delay

50

25

2

1

0

4 T3: Disconnection

BLER

Fig. 10: MAC-layer observations. UE1 and UE2 start their
downloading requests at 50 Mbps at T1 and T2, respectively.
Throughput (TP) was measured in Mbps, and delay was
measured in seconds.

TABLE III: RU power parameters.
USRP In-sync PH

(dB)
PCMAX
(dBm)

Average RSRP
(dBm)

UE1 ∈ gNB1 B210 55 17 -88
UE2 ∈ gNB2 N310 42 21 -73
UE3 ∈ gNB3 X310 32 17 -89

values of around 50, high CQI values of around 15, and
consistent MCS values. Its real throughput remains stable at 50
Mbps, consistently meeting its demand. The queueing delay
stays low at around a few milliseconds.

From time moment T2, the network has two active smart-
phones with aggressive traffic demands, generating significant
inter-cell interference. The impact of interference is reflected
in smartphone 1’s MAC data. As shown in Fig. 10, since
time moment T2, smartphone 1 experiences a considerable
performance drop, including decreased PHR, declined CQI,
reduced throughput, and increased delay. At time moment
T3, smartphone 1 disconnects from the network due to the
overwhelming interference.

These observations confirm the underlying relationship be-
tween inter-cell interference and MAC data, supporting our
design of the diffusion model that generates ICIM policies
based on MAC/KPM observations.

Three-Cell Case. We now examine the impact of interfer-
ence in a three-cell network, where each cell serves a single
UE (smartphone). Table III presents the key measured param-
eters of the three UEs, including their in-sync PHR, maximum
transmission power (PCMAX), and average Received Signal
Reference Power (RSRP). These measurements reflect the link
quality of each UE. For each UE in each cell, we gradually
increased its throughput demand from 0 to 80 Mbps using the
iperf and measured its throughput and delay performance
in the network with and without xDiff.

Fig. 11 presents an instance of our measurement results.
We make the following observations. When the three network
cells allocate resources independently (i.e., without xDiff),
the throughput of the three UEs fluctuates dramatically and
frequently falls below their throughput demands. This is due to
the independent resource allocation at each cell, which leads
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Fig. 11: Performance comparison of O-RAN w/ and w/o xDiff.
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Fig. 12: Measured performance in the case study.

to dynamic inter-cell interference. Compared to throughput,
the impact of interference on communication delay is even
more significant. The delay for one UE spikes to as high
as 5 seconds. More critically, inter-cell interference causes
UE disconnections when each UE continues to increase its
throughput demand. As shown in the figure, UE1 and UE2

lose connection at the 20-second mark due to severe inter-
ference. In contrast, the network with xDiff exhibits much
more stable throughput and delay performance. Moreover, the
network meets the throughput and delay demands of the three
UEs most of the time, and no UE disconnections are observed.
This demonstrates the effectiveness of xDiff in ICIM.

We repeated the above measurements multiple times, plac-
ing the three smartphones in different locations to collect their
throughput and delay data. Fig. 12 presents our measurement
results. It is evident that using xDiff significantly improves
the network’s throughput, delay, and reward performance. This
further confirms the effectiveness of xDiff in ICIM.

B. Ablation and Parameter Studies

Ablation Study. xDiff consists of multiple key components,
including a diffusion model and Q-networks. To ensure that
the performance gain in xDiff is primarily attributed to the
diffusion model rather than other components, we conduct an
ablation study. Specifically, we compare xDiff with two variant
models obtained by removing its diffusion components. Fig. 13
highlights the network architecture comparison between xDiff
and its two counterpart models, which we describe as follows.
• Double Deep Q-learning Algorithm (DDQN): We remove

the diffusion model in xDiff to create this DDQN model.
It uses a Q-network to generate the actions and another Q-
network to predict the target function values. Similar to xD-
iff, it employs double Q-networks to mitigate overestimation
bias. The target Q-network is updated based on the next state
and the loss function is computed using the reward signal.

• Deep Deterministic Policy Gradient (DDPG): DDPG is a
specialized Actor-Critic RL method designed for continuous
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Fig. 13: Comparison of Different RL Algorithms
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Fig. 14: Experimental results of ablation study.

action spaces. It is a model-free actor-critic framework,
consisting of an actor network implemented as an MLP and
a critic network that evaluates the Q-function. It does not
have a diffusion model but also uses two Q-networks to
improve stability.

We implemented these three policy generation models on
our testbed and evaluated their performance under identical
scenarios. The experiments involved three cells and ten smart-
phones. Fig. 14 presents our experimental results in terms of
convergence speed and reward distribution. Fig. 14a shows
that xDiff achieves the fastest convergence speed when there
is a change in the network state (e.g., increased UE throughput
demands). Fig. 14b demonstrates that xDiff attains the highest
reward compared to its two counterparts. These observations
confirm that xDiff outperforms its ablated counterparts and
highlight the critical role of the diffusion model in generating
efficient policies.

Denoising Step Number K. The number of denoising steps
is a key parameter for diffusion models, directly affecting
their generation performance. In time-insensitive tasks such as
image and video generation, a large number of denoising steps
is preferable as it generally leads to better generation quality.
However, policy-making for ICIM in O-RAN is a time-
sensitive task. A small number of denoising steps weakens
the diffusion model’s learning ability, resulting in suboptimal
policies and degraded network performance. Conversely, a
large number of denoising steps delays policy updates at DUs,
leading to outdated policies that hinder resource allocation. To
address this trade-off, we conduct experiments to empirically
determine the optimal number of denoising steps that balance
performance and computational delay.

Fig. 15a presents our experimental results. When increasing
the number of denoising steps from 2 to 5, the network reward
improves significantly due to enhanced policy quality. Beyond
5 steps, the reward gain diminishes; increasing the steps from 5
to 10 yields little improvement because the policy update delay
at the DU offsets the benefit of improved policy quality. When
the step number increases from 10 to 20, the reward declines.
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Fig. 15: Ablation study of hyperparameters

This occurs because the additional steps provide marginal pol-
icy enhancement while significantly prolonging computation
at the Near-RT RIC, leading to outdated policies and reduced
network performance. Based on these observations, we set the
number of denoising steps to 5 in our extensive experiments.

Loss-Balancing Parameter η. The loss function plays
a critical role in training the diffusion model, influencing
both convergence speed and generation quality. As shown in
Eq. (9), xDiff employs a combination of two loss functions:
the diffusion model’s internal loss Ld and an external loss Lq .
The hyperparameter η controls the balance between these two
loss components during training. We conduct experiments to
evaluate the impact of η on network performance.

Fig. 15b presents our experimental results for η = 0.5, 1,
and 2. The results indicate that η = 1 yields the best network
performance. We also observed that a lower η (e.g., 0.5) results
in unstable network performance, whereas a higher η (e.g.,
2) slows down convergence. Based on these findings, we set
η = 1 in our extensive experiments.

C. Performance Comparison

We now evaluate the performance of xDiff by comparing it
against existing methods, which we describe as follows.
• Qualcomm’s IAIS method [24]. The Interference-aware

Intelligent Scheduling (IAIS) method proposes an ML-based
interference prediction technique that utilizes CSI reported
by 5G UE [43], [71], enabling it to schedule transmissions
over dynamic air interfaces intelligently.

• CSRS method [41]: This is a Cellular Spectrum Re-
source Sharing (CSRS) algorithm that dynamically allocates
spectrum resources in cellular networks using a cluster-
based approach. Center UEs share spectrum, while edge
UEs use different channels. The resource allocated to a UE
is proportional to its demand to minimize ICI.

• Cell-Independent Resource Allocation (CIRA): This is a
widely-used approach where no inter-cell coordination exists
for interference management. Instead, each DU allocates the
entire set of available RBs to its UEs using the PF scheduler.

• One-Third Frequency Reuse (OTFR): In this method,
the frequency spectrum is allocated equally among three
DU-cells, with each cell receiving one-third of the total
spectrum. This fixed allocation ensures that each cell has a
dedicated portion of the spectrum, with minimal interference
between them.
Lab-Scale Scenario. Fig. 9a shows the testbed setup in a

lab scenario for this evaluation. This is a scenario for typical

indoor 5G small cells, rich in obstacles, reflectors, blockage,
human routing activities, and UE mobility. The experiments
involve three cells and a total of ten smartphones. During
the experiments, we use iperf to generate time-varying
data traffic for each smartphone, ranging from light traffic
(35 Mbps) to heavy traffic (165 Mbps). We repeated the same
experiments for the five ICIM methods in the same settings
and collected data for 5 hours.

Fig. 16 plots the throughput, queueing delay, BLER, and
reward performance of the five ICIM methods. Throughput:
It can be observed that xDiff and CSRS achieve similar
performance, both successfully meet the throughput demands
of the UEs over time. In contrast, the throughput of the other
three methods falls behind xDiff and CSRS, indicating that
they fail to meet the UEs’ throughput demands over time.
Queueing Delay: The results show that xDiff achieves superior
delay performance compared to the other four methods. This
can be attributed to the fast adaptation of the diffusion model
under dynamic network conditions. BLER: It can be seen
that CIRA achieves the highest BLER, while OTFR achieves
the lowest BLER. xDiff yields moderate BLER compared to
other methods. We note that a low BLER does not necessarily
indicate better performance from a networking perspective.
Instead, it may indicate that the transmission is not aggressive
enough to explore the channel capacity via MCS adaptation.
Reward: While throughput, delay, and BLER were measured
during the experiments, the reward was calculated based on
the measured throughput and delay values. It can be observed
that xDiff considerably outperforms CSRS and is significantly
better than the other three methods in terms of reward. Again,
this is attributed to the strong adaptability and robustness of
the diffusion model in xDiff in dynamic networks under time-
varying interference conditions.

Building-Scale Scenario. We increase the cell radius by
placing RUs at different locations in a building. The distance
between two RUs is about 18 m, with thick concrete walls
in between. We use the existing Wi-Fi network to establish
the E2 interface between Near-RT RIC and DUs, with a
communication delay of about 200 ms. Compared to the lab
scenario, this setting has a lighter interference due to the larger
cell size. We repeated the same experiments from the previous
scenario to measure the performance of the five ICIM methods.

Fig. 17 plots the measured per-UE throughput, queueing
delay, BLER, and the calculated reward, based on which we
have the following observations. Throughput: The experi-
mental results show that xDiff offers better throughput perfor-
mance compared to the other four ICIM methods. However,
unlike the previous scenario, the throughput gain of xDiff is
marginal. This could be attributed to the light interference in
the building-scale scenario. Queueing Delay: xDiff offers the
minimum delay compared to the other four ICIM methods.
This observation is consistent with that in the previous sce-
nario. BLER: xDiff has a moderate BLER compared to the
other methods. This observation is also consistent with the
previous scenario. Reward: xDiff considerably outperforms
IAIS and significantly outperforms the other three methods.
This confirms that xDiff is superior to the SOTA methods in
both strong and light inter-cell interference networks.
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Fig. 16: Performance comparison of xDiff and existing approaches in lab scenario
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Fig. 17: Performance comparison of xDiff and existing approaches in building scenario

TABLE IV: Comparison of computational complexity and
inference time.

Method Computational Complexity Inference Time

OTFR O(NUEs ·NRBs) Subframe (≤1ms)
CIRA O(1) Subframe (≤1ms)
CSRS [41] O(K ·NUEs · logNUEs) 5.4 ms
IAIS [24] O(NUEs · fML) 38.3 ms
xDiff O(NDenoising Steps ·NUEs ·NRBs) 21.8 ms

Comparison of Computational Complexity: We now
compare the computational complexity and inference time
(i.e., policy generation time) of xDiff against the other four
methods. Table IV presents our results, where the inference
time was measured on a desktop with a 14th gen i9 CPU. Since
CIRA and OTFR are rule-based scheduling methods, they offer
low computational complexity and can be completed within
one subframe. CSRS demonstrates moderate complexity with
an average inference time of 5.4 ms, striking a good balance
between performance and computational complexity. IAIS
relies on machine learning for interference prediction. It has
high computational complexity with an observed inference
time of 38.3 ms. xDiff has an average inference time of 21.8
ms. All these methods meet the Near-RT requirements in O-
RAN systems.

VII. CONCLUSION

In this paper, we presented xDiff, an online learning-
based xApp for ICIM in 5G O-RANs. xDiff consists of two
key components: a diffusion model and an RL framework.
We formulated the ICIM problem as a reward optimization
problem and employed a diffusion-based RL framework for
resource allocation policy generation. To address the time-
scale discrepancy between the Near-RT RIC and real-time
DUs, we introduced a new concept, the preference values, as
the policy representation to bridge the operations of the RIC

and DUs. We implemented xDiff on a 5G testbed and evaluated
its performance against state-of-the-art methods. Experimental
results demonstrate that xDiff outperforms existing methods,
highlighting the potential of diffusion models for the online
optimization of O-RAN.
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