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Wireless microphones are essential tools in business, education, entertainment, and other domains. However, most existing designs
rely on batteries, leading to the inconvenience of frequent recharging and the risk of unexpected power failure during use. In this
paper, we present TagMic, a battery-free wireless microphone enabled by a novel radio frequency (RF) backscatter technology.
TagMic is built on two key innovations. (i) Parametric backscatter tag design: This design enables the RF tag to operate at separate
excitation and reflection frequencies, fundamentally mitigating the self-interference problem inherent in conventional RFID
systems. Unlike harmonic backscatter approaches, it also requires a significantly lower activation voltage, resulting in a longer
communication range. (ii) Voice modulation via RF coupling: A passive piezoelectric sensor is integrated with the RF tag through
RF coupling to enable analog-domain frequency modulation (FM), directly encoding voice signals onto the backscattered signal.
This eliminates the need for digital signal processing, allowing for truly continuous voice streaming. We have built a prototype of
TagMic and evaluated it under realistic conditions. Extensive experiments demonstrate its effectiveness in achieving battery-free,
continuous, and seamless wireless voice streaming in realistic applications.
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1 Introduction

Wireless microphones play a crucial role in diverse daily-life applications, including entertainment, education,
business, and healthcare [4, 15, 16, 30, 36]. They eliminate physical constraints, enabling users to perform, present, or
interact with greater freedom and efficiency. This makes them indispensable tools in both professional and everyday
environments. However, most existing wireless microphones rely on batteries for operations [2, 10, 12, 19, 33]. This
reliance creates an inconvenience for users, requiring frequent battery recharging or replacement to maintain their
seamless voice communications. Moreover, the reliance on batteries introduces the risk of unexpected power failures,
which can disrupt critical tasks or performances. These limitations underscore the need for battery-free solutions to
enhance user experience and reliability.

RF backscatter has been studied for batteryless microphone applications using both analog and digital modulations.
Digital backscatter devices, such as Wireless Identification and Sensing Platform (WISP) [17] and MultiScatter [14], first
digitize the voice signal and modulate it onto RF waves for communications. Their approaches are actually not limited
to voice communications but also applicable to other sensing signals and modalities. In contrast, analog backscatter
devices, such as RF Bandaid [26], MARS [1], Battery-Free Phone [34], aim to reduce or completely remove the need
for power-hungry digital circuits and rely on analog circuits for voice sensing and communications. RF Bandaid [26]
eliminates digital circuitry by mapping sensor output directly to frequency modulation (FM), enabling ultra-low-power
wearable sensing. MARS [1] further reduces power consumption to below 1 pW for speech transmission, powered
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by ambient energy sources. Battery-Free Phone [34] achieves analog voice communication by modulating a JFET s
impedance with microphone signals, bypassing ADCs and operating on harvested RF and light. It presents a landmark
analog backscatter design that enables real-time speech communication while consuming only a few microwatts of
power.

Despite the advancement, most of the above RF backscatter approaches rely on the accumulation of harvested
energy over a certain period of time to power the RF tag circuits, resulting in a “low-duty-cycle” operation. To date,
little progress has been made in the design of viable solutions that can support continuous, seamless, and reliable voice
streaming from a batteryless device to an anchor device (see §6 and Table 1 for details). To achieve continuous voice
streaming, an RF backscatter should address the following two challenges.

e Challenge #1: Self-Interference. Most RF backscatter tags, such as RFID, reflect radio signals at the same
frequency as their excitation signals. Since the excitation signal is orders of magnitude stronger than the reflected
signal, the latter is severely corrupted by self-interference from the excitation signal at the RF reader. This self-
interference significantly reduces the sensitivity of the RF reader, resulting in a limited communication range
and a high packet error rate (PER) in practical scenarios. While a high PER may be tolerable for time-insensitive
RFID applications, it poses a fundamental challenge for voice streaming, which requires a reliable communication
channel for uninterrupted data transmission. Therefore, addressing self-interference is critical for enabling effective
and robust voice streaming applications.

o Challenge #2: Voice Signal Modulation. The power harvested by a typical RF backscatter tag is extremely
limited, making it insufficient to support digital voice signal modulation. Analog modulation schemes, which
have been explored in prior work [1, 26, 34, 53], appear to be a plausible alternative. However, existing analog
modulation techniques are not power-efficient enough for an RF backscatter tag to support continuous voice
streaming. This highlights the need for innovations in the design and integration of voice modulation and
transmission for batteryless RF tags.

In this paper, we present TagMic, the first-of-its-kind batteryless wireless microphone powered by RF backscatter
technology that supports continuous voice streaming. TagMic consists of two key components: (i) an RF backscatter
tag integrated with a piezoelectric sensor to capture voice signals and (ii) an RF reader responsible for transmit-
ting excitation signals and demodulating voice signals. The RF tag operates by modulating voice signals from the
piezoelectric sensor onto the reflective signals. This modulation is achieved by dynamically altering the reflective
capacitance properties of the tag, effectively encoding the voice waveform onto the reflected signal. The RF reader
then demodulates the backscattered signals to retrieve voice data, enabling continuous voice communication without
requiring active transmission or an onboard power source on the RF backscatter tag.

TagMic addresses the above two challenges by introducing an innovative backscatter tag design featuring dual
resonators: a voltage-sensing resonator (VSR) and a parametric resonator (PR). Both resonators are passive components
that leverage non-linear elements (varactor diodes) to produce voltage-tunable resonance frequencies distinct from
the excitation signal frequency. The VSR features an co-shaped conductor structure with two varactor diodes arranged
in a head-to-head configuration. The piezoelectric sensor converts voice sounds into voltage signals, which alter
the capacitance of the VSR’s varactor diodes, thereby modulating its resonance frequency. This results in a radio
signal whose frequency shift is approximately linearly related to the voice signal. The PR acts as a signal amplifier
for the VSR. It consists of a circular conductor structure split by a pair of varactor diodes, also in a head-to-head
configuration, and is tightly coupled with the VSR. The resonance frequency shift of the VSR is transduced into an
oscillation frequency shift in the PR, producing a frequency-modulated signal that can be wirelessly detected by an
anchor RF reader.

This new structure provides three key advantages for the existing backscatter tag. First, its excitation and reflection
signals are largely separated in the frequency domain, thereby fundamentally mitigating the self-interference issue in
conventional backscatter communications. Second, voice signals are modulated onto the tag’s resonance frequency
by altering the varactor diode’s capacitance, eliminating the need for digitalization. This enables continuous voice
streaming on a batteryless backscatter tag, addressing the second challenge. Third, the tag achieves frequency
modulation, establishing a linear relationship between the tag’s resonance frequency shift and the voice signal
amplitude. This simplifies voice recovery at the RF reader.

In addition to the backscatter tag, we have developed a signal processing pipeline for the RF reader to optimize
voice recovery. Our design deals with tag imperfections, such as resonance frequency drift and multi-carrier frequency
suppression, to ensure reliable voice streaming. Notably, we develop a robust algorithm for carrier frequency offset
(CFO) compensation and implement a lightweight deep learning model that leverages inherent voice properties
to mitigate nonlinear noise, enhancing voice quality. We have fabricated the proposed backscatter tag and built a
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Table 1. Comparison of RF Backscatter-based Microphone.

Continuous Self- Multiple Communication

Feature Voice Interference Batteryless? Tags? Circuit Type Modulation Range
Streaming? n s &

Hybrid A/D [35] No Yes Yes No Analog + Digital ASK/PSK + AM 2.7m
Battery Free Phone [34] No Yes Yes No Analog + Digital OOK/ASK + AM 9.4m
RF Bandaid [26] No Yes Yes No Analog FM 4m

Multi Scatter [14] No Yes Yes Yes Digital FSK + ASK 457 m
MARS [1] No Yes Yes Yes Analog FM 9m
MicArray [53]" Yes Yes No No Analog + Digital PM 28 m
WISP 6.0 [17] No Yes Yes No Analog + Digital ASK/PSK + FMO0 1.5m
TagMic (This work) Yes No Yes Yes Analog FM 8m

 MicArray targets batteryless operation, but its implementation relies on external power for FPGA-based digital processing on the backscatter tag.

prototype of TagMic. Extensive experiments demonstrate that TagMic provides a satisfactory voice performance
under various realistic conditions and supports the simultaneous operation of multiple tags.

Table 1 compares TagMic against existing RF backscatter work. The contributions of this work are summarized as
follows:

e We design and demonstrate a batteryless wireless microphone with significant potential for continuous voice
streaming applications across various fields.

e We propose a dual-resonator RF backscatter tag that modulates voice signals onto its resonance oscillation
frequency, enabling reliable far-field detection.

e We demonstrate TagMic in realistic scenarios, with extensive experiments confirming its superior performance,
multi-tag accessibility, and practical feasibility.

2  Overview

As explained in §1, self-interference is a grand challenge in the design of backscatter-based solutions for battery-free
wireless microphones. If the backscatter reflects radio signals at the same frequency as its excitation signal, it becomes
difficult for the RF reader to demodulate the voice signal. This is because the excitation signal generated by the
RF reader is orders of magnitude stronger than the backscattered signal from the tag. Completely mitigating the
self-interference from the excitation signal is extremely challenging for the demodulation of the backscattered signal.
Even after self-interference suppression, the residual interference remains dominant compared to the backscattered
signal. One approach to addressing the self-interference issue is to separate the frequencies of the excitation and
reflection radio waves. If these two frequencies are sufficiently separated, the RF reader can easily mitigate the
self-interference from the excitation signal in the frequency domain when decoding the reflective signals from the tag.

One way to achieve this separation is by utilizing harmonic RF tags [18, 48]. Unlike traditional RF tags, harmonic
RF tags exploit the non-linear properties of the tag’s circuit to generate harmonic signals. When an RF signal is
transmitted to the tag, the circuit reacts nonlinearly, generating harmonic frequencies (e.g., doubling or tripling the
frequency of the incoming signal). These harmonic signals then propagate back to the reader, carrying the tag’s
information bits. The RF reader decodes the information from the harmonic signals, rather than from the fundamental
frequency. By eliminating self-interference, the RF reader achieves better signal detection sensitivity, offering several
advantages over traditional RF backscatter tags, including higher data transfer rates, lower packet error rates, and
greater resilience to environmental noise.

While existing harmonic backscatter systems can mitigate self-interference, they are not well-suited for microphone
applications for the following reasons: First, harmonic backscatter tags rely on non-linear diodes (or other non-linear
elements) working in their nonlinear region to generate harmonic signals. Non-linear diodes, however, have a
minimum threshold voltage that must be reached before they exhibit non-linear behavior and generate harmonics.
This means that the incident (excitation) signal must be strong enough to bias the diode into its non-linear region. This
limits the communication range of harmonic tags. Second, and more importantly, since the harmonics are generated
by a single device such as a diode or transistor, it is extremely difficult to modulate an analog voice signal onto the
harmonic radio wave without digitizing the voice signal. This leaves the second challenge (voice signal modulation,
see §1) unaddressed.

In light of the issues with harmonic RF tags, we propose a new backscatter tag design for TagMic, which utilizes
dual LC resonators to generate an oscillation signal at a frequency different from its excitation signal. Similar to
harmonic tags, our LC dual-resonator tag also leverages the nonlinear properties of varactor diodes to alter the
resonance frequency based on the external voice signal. Unlike harmonic tags, our LC tag does not require the
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varactor diode to be activated in the nonlinear region to generate harmonics. Instead, it utilizes the voltage-tunable
capacitance feature of the varactor diode to dynamically change its resonance frequency. More importantly, the voice
signal can be directly modulated onto the resonance frequency, achieving frequency modulation without the need for
voice signal digitization. We present our design in the following section.

3 Design: RF Backscatter Tag
3.1 Preliminaries

LC Resonator. An LC resonator is an electrical circuit consisting of an inductor (L) and a capacitor (C) connected in
a specific configuration that exhibits resonance at a particular frequency. When an excitation RF signal is applied
to the LC resonator, it oscillates at its resonant frequency, which is determined by the values of the inductor and
capacitor. The resonant frequency is a function of the inductance (L) and capacitance (C) values, and can be adjusted
by modifying these components. This characteristic makes LC resonators ideal for various applications, such as
frequency generation and filtering, where the resonator produces a predictable and stable output frequency when
energized by an external signal. LC resonators are widely used in communication systems, RF circuits, and sensors
due to their simplicity, efficiency, and ability to generate precise frequencies with low power consumption.

Voltage Sensing Resonator (VSR). A VSR is an electrical resonator, typically based on an inductor-capacitor (LC)
configuration, specifically designed so that its resonance frequency is responsive to an applied external voltage. This
voltage sensitivity is generally achieved by incorporating nonlinear components, most commonly varactor diodes,
whose capacitance varies with the applied bias voltage. When a sensing voltage is connected across specific points of
the VSR circuit (often via dedicated sensing electrodes linked to virtual grounds), it modulates the capacitance of
these varactors. This change in capacitance alters the total equivalent capacitance of the resonator, thereby shifting
its characteristic resonance frequency. This principle allows the VSR to effectively transduce a voltage input into a
measurable frequency variation, serving as a core element in various passive sensing applications. Under conditions
where the sensing voltage is significantly smaller than the varactor’s inherent junction potential, the relationship
between the input voltage and the resulting frequency shift is often approximately linear. This property makes the
VSR suitable for encoding analog voltage signals—such as those generated by a piezoelectric sensor responding to
voice—directly into frequency variations, enabling frequency modulation of a radio signal.

Parametric Resonator (PR). A PR is a resonator that generates and controls oscillations through a nonlinear
parametric process, where the resonance frequency is modulated by an external signal (e.g., voice signal). Unlike
traditional resonators, which have a fixed resonance frequency determined by their physical components (such
as inductance and capacitance in LC circuits), a PR’s frequency is dynamically adjusted by modulating a system
parameter, such as capacitance, inductance, or nonlinearity of the circuit. This process allows the resonator to produce
oscillations at different frequencies depending on the modulation signal.

In a frequency-modulated PR, the resonance frequency is influenced by an external time-varying signal. This
modulation causes the resonator to oscillate at varying frequencies over time, producing frequency-modulated signals.
The frequency modulation arises because the resonator’s response is dependent on how the system parameters
change, effectively causing the resonant frequency to vary with the modulation signal. This behavior is often achieved
using nonlinear components, such as varactors or other types of nonlinear capacitors and inductors, that allow for
periodic adjustments in the resonance frequency.

3.2 Our Design

Tag Structure. Fig. 1 shows our design of the RF backscatter tag. It includes a VSR, a PR, and a piezoelectric sensor,
all of which are passive devices without the need for a battery. The piezoelectric sensor converts voice sound to a
voltage signal, which alters the capacitance of the varactor diodes and therefore changes the resonance frequency
of the VSR. The VSR has an co-shaped conductor structure made of an enameled copper wire wrapped around two
parallel rods. The wire’s two end edges are soldered to two varactor diodes connected in a head-to-head configuration.

To improve the detectability, we place the VSR across the edge of the PR, which operates as a local signal enhancer.
The PR has a circular-shaped conductor pattern split by a pair of varactor diodes connected in a head-to-head
configuration, creating a resonance mode with the circular-shaped current flow. The PR also has a continuous center
conductor to create a second resonance mode with the butterfly-shaped current flow. Therefore, the PR has two
resonance modes: circular mode and butterfly mode, as shown in Fig. 2. Through repeated signal mixing of these two
modes, the net effect is a significant amplification of signals near both resonance frequencies.
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Fig. 1. The RF tag includes a voltage sensing resonator (VSR), a parametric resonator (PR), and a piezoelectric sensor (PS). The VSR
has a co-shaped conductor structure with two head-to-head varactor diodes. The PR has a circular-shaped conductor with two
head-to-head varactor diodes as well. The VSR is sitting at the edge of the PR, creating effective coupling with PR for frequency
generation.

Ground

Circular mode. Butterfly mode.

Fig. 2. The PR operates in the circular resonance mode (left), where the circuit has zero voltages in the center plane, making the
circular mode equivalent to two half-loops sharing the same center ground. The PR operates in the butterfly resonance mode
(right), where two separate current flows are confined within their individual meshes, making the butterfly mode equivalent to
two half-loops that are electrically isolated in the center plane.

Since the VSR overlaps along the edge of the PR, this configuration establishes effective magnetic coupling between

the VSR’s resonance and the PR’s circular-mode resonance. Because the loops of the VSR are symmetrically aligned
with the horizontal center conductor of the PR, the VSR is decoupled from the PR’s butterfly mode. Consequently, any
shift in the VSR’s resonance frequency—caused by voice sound—will be reflected in the PR’s circular-mode resonance
frequency.
Separation of Excitation and Reflection Frequencies. When the tag is activated by a wireless excitation signal at
the sum frequency of the circular and butterfly mode resonance frequencies of the PR, the varactor diodes in the PR can
convert wireless pumping power into sustained current flows at the PR’s resonance modes, thus sustaining continuous
circuit oscillation. When acoustic sound hits the piezoelectric sensor, it creates a bias voltage to modulate the VSR’s
resonance frequency. Because the VSR couples only to the circular resonance mode of the PR, the resonance frequency
shift of the VSR is converted into circular-mode oscillation frequency shift of the PR, creating a frequency-modulated
oscillation signal that can be wirelessly detected by a remote RF reader.

Mathematically, denote f. and f;, as the oscillation frequencies of the PR operating in circular and butterfly modes,
respectively. These two frequencies are determined by the design of the tag parameters, materials, layout, etc. Then,
the excitation frequency of the tag should be f., = f; + fp, and the reflection frequency of the tag is f;. The excitation
and reflection frequencies of the tag are distinct, fundamentally resolving the self-interference problem. The separation
of the excitation frequency f., and reflection frequency f, makes it easy for an RF reader to demodulate the voice
signal over a long distance.

3.3 Operation Principles

In this part, we explain the operation principles of VSR and PR, and show that the generated oscillation signal is
frequency-modulated by voice sound.
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Fig. 3. Architectural diagram of VSR.

Voltage-Sensing Resonator. Fig. 3 illustrates the VSR operating on its own (without PR). Denote V; as the bias
voltage generated by the piezoelectric sensor. Denote f; as the resonance frequency of the VSR. When the bias voltage
Vs is applied to the sensing electrodes, which are connected to the resonator’s virtual grounds, it alters the capacitance
of the varactor diodes and consequently shifts the resonance frequency fi:

1 [ 2 1 2
= — = — e — 1
ﬁ 2 L1C1 2r ( )

A
L (1- &)

where L; and C; are the VSR’s inductance and capacitance, respectively; Cy is its capacitance when the bias voltage
is 0. @ is the varactor diode’s junction potential. A; is a constant related to the property of the varactor diode.

Consider the case where the sensing voltage V; is much smaller than the diode’s junction potential ®;. Based on
Taylor series approximation, Eq. (1) can be approximated as:

1 2 1_/11Vs (g)flo 1_)~1Vs ’
2r L1C10 q)l

fi= @)

@4
where Eq. (a) follows our definition that fjo = % LILCIU Conceptually, fi is the VSR’s resonance frequency when
the bias voltage is zero.

Eq. (2) reveals that when the sensing voltage Vs is much smaller than the varactor diode’s junction potential ®;,

the resonance frequency of the VSR has an approximately linear relationship with the sensing voltage V. This is
essentially frequency modulation, with the sensing voltage V; acting as the original signal and f; as the carrier
frequency. In our design, we place two large resistors with the VSR’s varactor diode (see Fig. 1), ensuring that V; is
much smaller than ®;.
Parametric Resonator. The PR is a signal enhancer for the VSR to improve the signal emission. Due to circuit
symmetry, the PR can be equivalently modeled as two single-frequency resonators, where the effective inductance
depends on the resonance mode under consideration. When the PR is powered by an electromotive force oscillating
at frequency f,, which is wirelessly provided by the RF reader, the junction capacitance of its varactor diodes can
be considered modulated by an effective voltage V,. By setting the pumping frequency approximately equal to the
sum of the resonance frequencies of the circular resonance mode and the butterfly resonance mode, i.e., f, ~ fo + fp,
the PR leverages the nonlinear capacitance of its varactor diodes to convert external pumping power into enlarged
backscattered signals near its circular-mode resonance frequency.

Denote f, as the frequency of the backscattered signals generated by the PR. Recall that V; is the bias voltage signal
generated by the voice sound. Then, by analyzing the oscillation frequencies at VSR and PR as well as their coupling
relationship, we have:

a_fc_(_)uflo)( o )(ff) 1+%_1+2(%" )(%"1) | 5

L 1
where f; and f, are the stand-alone resonance frequencies of VSR and PR, respectively. f; is the lower resonance
frequency of the coupled VSR and PR resonators. R, and L, are the effective resistance and inductance of the PR in its
circular mode. R, and Lj, are the effective resistance and inductance of the PR in its butterfly mode.

Evidently, Eq. (3) indicates that the oscillation frequency f; of PR, which is used by the RF reader to demodulate
the voice signal, is linearly modulated by the bias voltage V; provided by the piezoelectric sensor. This confirms the
frequency modulation property of the proposed tag.

3.4 Multi-Carrier Frequency Modulation (FM)

Single-Carrier FM. Ideally, the RF tag modulates the voice signal using frequency modulation, establishing a linear
relationship between the voltage from the voice sensor and the instantaneous frequency of the radio signal. Denote
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Fig. 4. Spectrogram of the RF tag’s reflection signal. The voice signal is frequency-modulated on multiple carriers.

o(t) as the voice signal and f. as the frequency of the radio signal emitted by the RF backscatter tag when there is no
bias voltage. Then, the ideal FM signal can be written as:

s(t) =aexp (27Tﬂt+27TA/tU(T)dT), (4)
0

where « is the signal amplitude, fj is the peak frequency deviation, which controls the extent of frequency shift due
to the modulation.

Multi-Carrier FM. However, the imperfections of the electronic devices, such as varactors and other components in
the backscatter tag, introduce multiple center frequencies in the backscattered radio signal. The reflection signal from
the RF tag can be modeled as:

K t
s(t) = Z ay exp (Zﬂfckt + 27y / v(r)dr) +w, (5)
k=1 0

where f;, is the kth carrier’s center frequency and «y is its amplitude, A is the frequency deviation sensitivity, and
w is the effect of modeling noise and other imperfections of the backscatter tag.

Experimental Observations. Fig. 4 presents a sample of the measured reflection signals from the RF tag when a
voice signal is present. The spectrogram shows approximately six carriers, each representing a copy of a frequency-
modulated voice signal. The frequency gaps between these FM carriers are identical. Each carrier can be independently
decoded to recover the voice signal. Given that the carriers exhibit varying amplitudes and power levels, different
strategies can be employed to leverage spectrum diversity. For instance, the carrier with the largest amplitude can be
selected for voice recovery, or all six carriers can be decoded and combined using maximum-ratio combining (MRC)
to optimize voice quality.

4 RF Reader: Voice Recovery

In this section, we present our design for the RF reader to demodulate the backscattered radio signals from the RF tag
for voice recovery.

4.1 Challenges and Approaches

In designing a voice signal recovery system, we face two significant challenges. The first challenge lies in the carrier
frequency offset (CFO) estimation and compensation. The center frequency of the radio signal generated by the
backscatter tag is not stable. It fluctuates due to factors such as the tag’s orientation, the movement of surrounding
objects, and the frequency drift of the excitation signal. Since FM is sensitive to CFO, this drift degrades the quality of
the recovered voice signal at the RF reader. To mitigate this issue, we have developed a CFO estimation algorithm
that leverages the signal profile signature to estimate the center frequency offset in real-time. This estimated offset is
then compensated for the baseband signal to ensure accurate voice recovery.

The second challenge stems from the inherent nonlinear characteristics of the fabricated RF backscatter tag. While
the tag is designed for ideal frequency modulation, its behavior often diverges in practice due to the imperfections
caused by electronic components and PCB, rendering the theoretical model inaccurate. Furthermore, the weak
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backscattered signal recovered at the RF reader is susceptible to multipath propagation effects and residual CFO
distortions. These imperfections appear to be non-stationary and complex. Accurately modeling these imperfections
through analytical means or addressing them using traditional filtering techniques is extremely difficult. To address
this challenge, we propose a learning-based approach that employs a neural network. This data-driven strategy is
adept at learning the complex, potentially non-linear mappings between the demodulated, noisy signal and the clean
voice counterpart, implicitly capturing and compensating for the system imperfections without requiring explicit
mathematical models, thereby enabling robust voice signal recovery and enhancement.

4.2 Signal Processing Pipeline

Overview. Combining the above approaches, we propose a real-time signal processing pipeline, as illustrated in Fig. 5,
for the RF reader to recover voice signals. At the RF reader, the radio signal is first down-converted to an intermediate
frequency (IF) (e.g., 40 kHz) and then sampled for digital signal processing. The reason why we convert the radio
signal to IF rather than baseband (zero-IF) is twofold. First, voice signals contain rich low-frequency components
(typically below 100 Hz), and the RF front end often suffers from disturbances near the DC component. Therefore,
using IF will avoid interference at low frequencies. Second, the radio frequency suffers from CFO. Since the subsequent
process needs to compensate the CFO, using IF will not incur an additional processing burden.

The digitalized signal samples are then processed by a sequence of blocks for CFO compensation (marked yellow

in Fig. 5). In this process, the CFO is tracked over time and compensated for individual segmented signal frames.
Furthermore, one carrier frequency is selected for frequency demodulation, while others are mitigated in the frequency
domain for simplicity. After CFO compensation, the signal is FM demodulated and resampled to the voice sample
rate. A lightweight learning-based model has been developed and trained to enhance the voice quality by tackling
imperfections of the system including device nonlinearity and unexpected spectral spurs.
CFO Compensation. Our CFO estimation and compensation are performed in the frequency domain. As shown
in Fig. 5 (with those blocks highlighted yellow), the signal stream is first segmented and then processed with an
FFT operation, converting the signal from the time domain to the frequency domain for CFO estimation, tracking,
and compensation. The time duration of each segment is an empirical parameter (e.g., 50 ms). Fig. 6 shows an
example of one segment, which has multiple frequency peaks corresponding to multiple carrier frequencies from
the RF tag. Among these carrier frequencies, we choose one (e.g., the one with the highest amplitude) for voice
signal demodulation. Denote Af as the center frequency of the kth carrier. We intend to use the one with Af; for
voice demodulation. Since voice has rich low-frequency components, Af; must be accurately estimated for CFO
compensation.
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unintended carriers.

To enhance the CFO estimation accuracy, we employ two strategies: (i) Averaging over carriers. Experimental
measurement shows that the frequency gap of those carriers is identical. Based on this observation, we first estimate
all five CFOs (i.e., Afy, Afi, ..., Afi) using their peak positions, and then calculate Afy = 1/5 Zizo Aﬂ, where Aﬂ
is the measured CFO of carrier k. (ii) Averaging over time. The carrier frequency drift is a slow, stationary process.
Therefore, we employ an LPF to enhance the estimate of CFO over segments. Denote Af;(t) as the CFO of the selected
carrier in segment t. Fig. 7 exhibits an example of the measured Af;(¢) before and after an LPF with 2 kHz bandwidth.

Based on the resultant Af; (), we shift the center frequency of the intended carrier to zero, generating the zero-IF
signal. Then, another LPF is applied to the zero-IF signal to remove other carriers. Fig. 8 shows these operations.
Frequency Demodulation. We use the phase differentiation approach to demodulate the zero-IF FM signal. Specif-

ically, referring to Eq. (4), the zero-IF signal after the LPF can be written as: r(t) = fexp (ZIZA fot v(r)dr). Then,

the extracted phase can be expressed as: Zr(t) = 27A /Ot v(7r)dr. Then, we have: 2/r(t;) — Zr(t;) = 2xA ftfz o(r)dr =
2Av(t;)(t, — t1), provided that A = t, — t; is small enough. Therefore, the voice signal can be estimated by

fs

o(t) = [U‘(tz) - 2r(t)],

where f; is the sampling rate of r(t).

4.3 Al-Assisted Voice Enhancement

The resampled voice signal is already audible and intelligible, but sometimes with low-frequency and spurious noise.
To enhance the voice quality, we employ a lightweight AI model that leverages the inherent voice properties for noise
suppression. We chose an Al-based approach because the distortions in TagMic are nonlinear and time-varying, arising
from hardware imperfections and multipath effects. Such distortions are difficult to capture with fixed-parameter
filters, whereas a neural network can directly learn the mapping from noisy to clean signals. While the literature has
a large body of work in this field, we follow the approaches in [6, 31, 46, 47] to create a solution that operates directly
on raw waveforms. This approach does not need to convert the voice signal between time and frequency domains,
and thus has a relatively low computation cost.

Fig. 9 shows our Al model, which was built based on the DEMUCS [6] architecture. Essentially, it is a causal
encoder-decoder framework, augmented with skip connections and LSTM layers for temporal attention. The encoder
processes the noisy signal into a latent representation, z = E(x), which is then refined by a sequence model
Z = R(z) = LSTM(z) + z. Then, the decoder reconstructs the clean signal, § = D(Z). The Skip connections ensure that
fine-grained details from the input are preserved across layers, enhancing the output quality.

The training objective is to minimize both waveform-level and spectrogram-domain losses. At the waveform level,
the model minimizes the L loss: £,, = # lly — 9|1, which directly measures the difference between the clean signal y
and the enhanced signal ¢, where N represents the length of the voice signal. To further enhance perceptual quality, a
multi-resolution STFT (Short-Time Fourier Transform) loss L is employed. This loss combines spectral convergence
and magnitude terms:

Z ISk (y) — Sk (D) IF

St RIoESkw) ~loESi(@ ©
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where Sk (-) returns the amplitude of a target signal after the k-point STFT operation, || - || and || - ||; denote Frobenius
and L, norms, respectively. M is an empirical parameter representing the number of STFT resolutions. The total loss
used to train the model is Loveran = L + Ls.

Extensive data from the RF tag, along with its corresponding clean voice data, has been collected to train the Al
model. Fig. 10 illustrates an example from the model’s inference stage, showing the input (noisy voice signal) and the
output (enhanced voice signal). The results demonstrate that the model effectively suppresses noise and enhances the
quality of the voice signal.

5 Experimental Evaluation

In this section, we build a prototype of TagMic and evaluate its performance and robustness in realistic scenarios.
Specifically, we aim to seek answers to the following questions.

e Distance (§5.4). What is the usual communication distance with an RF reader that has ordinary transmission
power (e.g., IW)?

e Robustness (§5.5 and §5.6). How does TagMic perform when the backscatter tag faces different orientations or is
in occluded scenarios?

o Mobility (§5.7). Does TagMic work when used by walking speakers or in dynamic environments?

e Multi-User Support (§5.8). Can an RF reader work with multiple tags at the same time?

5.1 Implementation

RF Tag. Fig. 11 shows a picture of our fabricated tag, which consists of a VSR and a PR as well as a piezoelectric
sensor. This PR includes a circular inductor with an inner diameter of 13.5 mm and an outer diameter of 14.5 mm
etched on the surface of a 0.8-mm G10 board. The upper/right and lower/left half circles have split gaps that were
filled by varactor diodes with an equivalent capacitance of 9.1 pF, creating a circular resonance mode. The butterfly
resonance mode is created by connecting the two virtual voltage grounds of the circular mode with a horizontal
conductor.

The VSR is fabricated by wrapping a 32-G enameled copper wire around two 1.5-mm diameter rods that are

separated by 1.8 mm. Five counterclockwise turns in the first rod are followed by a clockwise turn in the second
rod, before the wire’s two end terminals are connected to two varactors (3 pF) placed in head-to-head direction. The
piezoelectric transducer is connected to the common cathode with a sensing electrode and to the common anode with
another sensing electrode. If needed, a half-wave dipole antenna can be wrapped around the edge of the PR’s circular
conductor pattern to increase its inductive coupling with the PR. Our prototype uses off-the-shelf components with
an estimated material cost of $1.8 per tag. While the current design is handcrafted, we anticipate that the cost can be
significantly reduced (to $0.95) with mass production and PCB integration.
RF Reader. Fig. 11 also shows the system setup of the RF reader, which consists of a USRP N310, a power amplifier
(PA), two directional antennas, and a PC. The frequency of the excitation signal is 915 MHz, and its transmission
power is about 30 dBm. When powered by the excitation signal, the backscatter tag generates reflective signals at
about 515 MHz. The entire signal processing pipeline is implemented using GNU Radio on the PC for real-time voice
signal demodulation.

To train the Al model in the signal processing pipeline, we collected data in two scenarios. (i) Human Voice: Volunteers
have TagMic attached to the front of their clothing. Ground-truth voice data was recorded using a smartphone, while
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Fig. 11. A picture of the RF reader (left) and a picture of the backscatter tag (right).
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Fig. 12. Case studies on the recovered voice signal waveform before and after the Al model as well as their metrics.

the demodulated backscattered signals from TagMic were captured by the RF reader. (ii) Audio/Video Playback: To
reduce human effort, a smartphone playing YouTube videos was used to collect recovered voice data from the RF
reader alongside the corresponding ground-truth voice recordings.

For both methods, data were collected across varying tag distances (50 cm to 550 cm in 50 cm increments) and
tag orientations (0° to 180° in 30° increments) to ensure robustness. For each condition, 10-15 minutes of voice data
were recorded. The dataset was split into 80% for training and 20% for testing. Voice recordings were segmented into
smaller durations (3 to 15 seconds) to improve model robustness, accounting for variable-length input utterances. The
Al model was trained for 500 epochs using the loss function described in Sec. 4.3. The Adam optimizer was employed
with a learning rate of 3 X 10™%, and momentum parameters f; = 0.9 and 8, = 0.999. All audio is resampled at 16 kHz.

Our trained model comprises approximately 33.6 million parameters (file size: 128MB), achieves real-time inference

on an Intel i7 CPU with an average latency of 73ms, and has a computational cost of 10.2 GMACs.
Ethical Considerations. All user studies conducted in this work follow the ethical standards and guidelines
for research involving human participants. The study protocol was reviewed and approved by the Institutional
Review Board (IRB) of the authors’ institution. Before participation, all volunteers were informed about the purpose,
procedures, and potential risks of the study, and provided their written consent. Participation was entirely voluntary,
and participants could withdraw at any time without penalty. During experiments, only audio data relevant to the
evaluation of TagMic was collected, and all recorded data were anonymized to protect privacy and confidentiality.

5.2 Performance Metrics

We employ both signal-level and perceptual-level metrics to evaluate the performance of voice recovery at the RF
reader. The signal-level metrics are objective assessments, while the perceptual-level metrics are subjective evaluations.
Specifically, we use the following metrics for evaluation.

o SI-SDR (signal metric) represents the Scale-Invariant signal-to-Distortion ratio. It measures the level of signal
preservation by calculating the ratio of the target signal to the distortion.

o LLR (signal-Level metric) represents the Log-Likelihood ratio. It measures the distortion in speech by comparing
the linear predictive coding (LPC) coefficients of the original and processed speech.
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Table 2. TagMic’s performance at different distances.

SI-SDRT LLRY sToI PESQT MOST

w/o Al w/ Al w/o Al w/ Al w/o Al w/ Al w/o Al w/ Al w/o Al w/ Al
50 cm 12.1 14.65 0.25 0.21 0.82 0.97 3.21 3.65 4.5 4.5
100 cm 9.95 11.33 0.27 0.24 0.77 0.91 3.04 3.57 43 4.5
150 cm 8.90 9.81 0.37 0.3 0.75 0.82 2.98 3.20 4.0 4.2
200 cm 7.15 8.57 0.49 0.41 0.69 0.76 2.85 2.93 3.5 4.0
250 cm 5.64 7.42 0.65 0.52 0.61 0.73 2.71 2.88 3.0 3.5
300 cm 4.97 7.05 0.71 0.53 0.55 0.72 2.49 2.73 3.0 3.5
350 cm 4.05 6.86 0.82 0.58 0.52 0.67 2.33 2.61 2.7 3.5
400 cm 3.16 6.11 0.86 0.61 0.40 0.65 1.95 2.55 2.5 3.35
450 cm 2.45 4.63 0.99 0.77 0.38 0.6 1.78 2.17 2.0 3.2
500 cm 2.05 3.56 1.10 0.89 0.35 0.56 1.66 2.01 2.0 3.1
550 cm 1.77 3.27 1.35 0.97 0.30 0.55 1.42 1.93 1.5 2.85

e STOI (perceptual-level metric) represents the Short-Time objective intelligibility, ranging from 0 to 1. This
metric measures the intelligibility of speech by evaluating the similarity between the short-time spectral envelopes
of the clean and enhanced signals.

o PESQ (perceptual-level metric) is a perceptual evaluation of speech quality, ranging from 1 to 4.5. This metric
measures the perceptual quality of speech signals by comparing a reference signal with an enhanced signal.

e MOS (perceptual-level metric) represents the Mean Opinion Score. It measures the speech quality based on
human ratings, typically ranging from 1 to 5.

For LLR, lower values are preferable. For other metrics, higher scores indicate better-recovered voice quality.

5.3 Case Studies

To visually examine the recovered voice signal waveform and better interpret the corresponding metric values, we
conducted a set of case studies comparing the recovered voice waveforms against their ground-truth counterparts.
In these cases, the recovered voice waveform data was collected while the tag was attached to a person standing
approximately 80 cm away from the RF reader.

Fig. 12 presents our measurement results, showing the voice waveform before and after the AI model alongside
the ground-truth voice waveform. The comparisons reveal that the RF reader can recover the voice waveform with
high fidelity across all studied cases. Perceptually, one can understand the content of all voice segments almost
perfectly. Notably, the AI model enhances the similarity of the recovered waveform to the ground truth. For example,
the recovered “Voice 1’ waveform before applying the Al model considerably deviates from the original waveform.
However, after the process of the Al model, the waveform closely resembles the ground truth, demonstrating the
Al model’s effectiveness in voice waveform recovery. Meanwhile, the recovered waveforms for “Voice 2, ‘Voice 3,
and ‘Voice 4’ before applying the Al model already exhibit strong similarity to their corresponding ground-truth
waveforms. This indicates that, even without the Al model, the proposed signal processing pipeline effectively decodes
the voice signal in most cases.

Additionally, Fig. 12 includes the metric values for each recovered voice waveform, both before and after the Al
model. These values provide a quantitative understanding of waveform quality, complementing the visual analysis. We
hope this combination of visual and numerical data will aid in interpreting the metric values presented in subsequent
sections.

5.4 Tag Distance

Communication distance is a critical parameter for a wireless microphone. We evaluate the quality of the recovered
voice at the RF reader when placing TagMic at different distances. Specifically, TagMic is attached to a participant’s
clothing, and the participant speaks at varying distances from the RF reader, ranging from 50 cm to 550 cm in 50 cm
increments.

Perceptually, all recovered voice segments remain clearly intelligible. Table 2 presents the quantitative values
for those metrics at their 50th percentile. When the distance between TagMic and the RF reader is less than 2 m,
the difference in audio quality between the original and recovered voices is perceptually negligible. As the distance
increases, TagMic’s performance degrades. However, the Al model’s enhancement becomes more pronounced at
greater distances.

It is worth noting that our experimental observations suggest that those metric values do not always correlate
directly with human perception. This observation aligns with the findings in prior work [27]: voice signals can remain

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 219. Publication date: December 2025.



A Batteryless Wireless Microphone using RF Backscatter « 219:13

2 3 4 5

o

o
o o
=)
(= hd I
o -
o

o (=3
(= n
I -
//
‘© o
=

5m4m 3m 2m 1m

o

180°

5m4m 3m 2m 1m

Fig. 13. Measured SI-SDR when TagMic Orientations Fig. 14. Blockage study.

Blockage 1 Blockage 2 Blockage 3 Mobility 1 Mobility 2

Ground
Truth

Before
Al  SI-SDR 5.46 6.45
LLR 1.12 1.51 1.37 0.76
STOI 0.63 0.75 0.46 0.81
PESQ 1.77 1.68 1.95 2.55
MOS 3.2 3.1 3.5 3.3 3.9

Fig. 15. Mel spectrogram of the recovered and original voices in the presence of blockage and mobility.

intelligible even when metric values are low. With the assistance of the Al model, TagMic remains functional and
delivers intelligible voice signals even at a distance of 8 m.

5.5 Tag Orientation

A key component of TagMic is the parametric resonator (see Fig. 11), designed in a circular shape to efficiently harvest
energy from excitation signals. We hypothesize that the energy-harvesting efficiency of TagMic is dependent on
its orientation relative to the RF reader. Theoretically, TagMic achieves maximum efficiency when the RF reader is
positioned perpendicular to the resonator. To validate this hypothesis, we evaluated TagMic’s performance across
various orientations (0° to 180° in 30° increments) and distances (1 m to 5 m in 1 m increments).

In all cases, the recovered voice at the RF reader was intelligible. Fig. 13 shows the SI-SDR results measured at
the RF reader. The left panel illustrates the SI-SDR of the recovered voice signal without Al enhancement, while the
right panel depicts the SI-SDR after Al enhancement. The results indicate that the SI-SDR performance of TagMic is
primarily influenced by the distance to the RF reader, with orientation playing a less significant role than expected.
This could be attributed to the rich scattering properties of indoor environments, which help maintain consistent
energy harvesting and voice recovery performance regardless of orientation.

5.6 Resilience to Blockage

Blockage is an important factor in indoor environments. To evaluate TagMic’s resilience to blockages, we conducted
experiments to evaluate the performance of TagMic in three typical scenarios: (i) the speaker faces away from the RF
reader (see the left image in Fig. 14); (ii) a person obstructs the line-of-sight path between TagMic and the RF reader
(see the top-right image in Fig. 14); and (iii) a piece of furniture blocks the line-of-sight path between TagMic and the
RF reader (see the bottom-right image in Fig. 14). These scenarios are referred to as ‘Blockage 1, ‘Blockage 2, and
‘Blockage 3, respectively. In all cases, the distance between TagMic and the RF reader was approximately 3 meters.

Fig. 15 presents the experimental results as mel spectrograms (a standard method for sound analysis) along with
the corresponding metric values. The findings demonstrate that, with the AI model, TagMic effectively reconstructs
voice signals with high similarity to the ground-truth voice. Notably, TagMic exhibits strong resilience to all three
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Fig. 18. Spectrogram of two RF tags’ reflection signal.

blockage scenarios. Specifically, in most cases involving furniture, TagMic can recover intelligible voice signals even
without the AT model.

5.7 Mobility

A wireless microphone must support mobility for practical use. To validate the usability of TagMic, we conducted
mobility tests in two cases: (i) the speaker walks in front of the RF reader, with the distance varying from 2.5 m to 5.0 m
(see the top image in Fig. 16); and (ii) the speaker remains seated on a chair while an interfering person moves around
the speaker and the RF reader (see the bottom image in Fig. 16). These scenarios are referred to as ‘Mobility 1’ and
‘Mobility 2, respectively. Fig. 15 presents our experimental results. The findings indicate that TagMic’s performance
degrades slightly when the speaker is in motion. However, TagMic consistently maintains satisfactory performance
in both scenarios, with all recovered voices being of high quality.

5.8 Multi-User Support

TagMic can support multi-user operation through frequency division. By adjusting the number of coil windings, the
circular-mode’ resonance frequency (fz) of TagMic can be tuned to a unique operation frequency. To validate this
feature, we fabricated a second TagMic tag that has a different number of coil windings from the first tag. Fig. 17
illustrates the multi-user testing scenario, where two participants wear Tag A and Tag B, respectively. Fig. 18 presents
the spectrogram captured when both tags were concurrently active and modulated by voice signals. The spectrogram
shows two separate clusters of frequency-modulated carriers, each from one tag, centered around distinct frequencies.
In this experiment, the frequency separation was approximately 380 kHz. This frequency separation is sufficiently
large to prevent mutual interference, allowing the RF reader to isolate and demodulate each voice stream. After
Al enhancement, the demodulated voice streams from Tag A and Tag B achieved quality comparable to single-tag
operation, with SI-SDR values of 11.75 and 12.37, LLR values of 0.29 and 0.23, STOI values of 0.91 and 0.93, PESQ
values of 3.35 and 3.46, and MOS values of 4.1 and 4.3, respectively. More importantly, our experimental results
demonstrate that this frequency separation remains stable regardless of the relative distance between the tags, their
individual orientations, or their operational status (stationary or mobile). This ensures reliable signal separation under
diverse real-world conditions.

5.9 Overall Performance

We conducted extensive experiments to evaluate TagMic’s performance across a wide range of scenarios, considering
factors such as varying tag distances, orientations, mobility speeds, and voice source types. Our objective was to
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Fig. 19. Overall performance of TagMic in various conditions.

comprehensively assess its effectiveness and reliability under real-world conditions. A total of 1500 minutes of voice
data were collected for this evaluation.

Twelve volunteers participated in a perceptual evaluation, classifying the recovered voices into three categories:
low quality, medium quality, and high quality. Approximately 20% of the voices were classified as low quality, 45%
as medium quality, and 35% as high quality. In addition to this subjective evaluation, Fig. 19 presents a statistical
summary of the metric values across all scenarios. The results demonstrate that the Al model significantly enhances
the overall voice quality, ensuring that the majority of the voices are intelligible after processing.

6 Related Work
6.1 Batteryless Microphones using RF Backscatter

RF backscatter offers a compelling pathway for ultra-low-power communication by reflecting ambient RF signals. In
general, two types of RF backscatter systems have been explored to realize batteryless data communications.

o Digital Backscatter Microphones: Platforms like the Wireless Identification and Sensing Platform (WISP) [17] and
networked systems like MultiScatter [14] can be utilized to implement a batteryless wireless microphone. They
digitize the audio signal before modulating it onto the backscattered carrier frequency, offering programmability
and compatibility with standards like EPC Gen2 [17]. However, the energy required for signal digitization and
digital data processing limits its operation in a continuous fashion due to their reliance on energy harvesting
circuits. As a result, these approaches are limited to a low-duty-cycle operation and cannot support continuous
voice streaming [14, 17, 34].

o Analog Backscatter Microphones: To overcome the power limitations of digital components, researchers have
developed purely analog systems. Early concepts like the Great Seal Bug [29] demonstrated direct modulation
of RF carriers via physical vibrations. Three modulations have been exploited for this purpose. The first one is
Frequency Modulation (FM). For example, RF Bandaid [26] directly maps sensor outputs to frequency changes,
achieving FM without digital conversion. MARS [1] advances this, operating below 1 uyW using a modified
Clapp oscillator. The second one is Amplitude Modulation (AM) and Impedance Modulation. For instance, the
Battery-Free Phone [34] modulated a JFET s impedance using an electret microphone’s output. The third one is
Advanced Modulation and Arrays. For example, MicArray [53] employed Pulse Position Modulation (PPM) and
Differential PPM (DPPM) for synchronous multi-track audio recording.

While these works demonstrate important design insights, they are constrained by tradeoffs that limit their
suitability for continuous, high-quality voice streaming. Specifically, Battery-Free Phone [34] employs a hybrid
analog-digital design involving a microcontroller, impedance modulation, and energy storage, which necessitates
duty cycling and limits communication continuity. In contrast, TagMic eliminates all active electronics and digital
control logic, relying entirely on passive components for continuous, real-time analog frequency modulation. Its dual-
resonator design separates the excitation and reflection frequencies, fundamentally resolving self-interference and
enabling reliable multi-tag operation. MARS [1] is designed for general-purpose low-power sensing (e.g., touch, swipe,
and short speech bursts), but its minimalist design sacrifices signal fidelity and consistency. TagMic, by comparison,
achieves continuous analog modulation with enhanced resilience through its multi-carrier architecture and precise
separation of oscillation frequencies. It also avoids complex components like zero-threshold MOSFETs used in MARS.
MicArray [53] targets batteryless operation but depends on external power for FPGA-based digital signal processing.
It also relies on time-multiplexed synchronization and digital pulse modulation schemes, introducing hardware
complexity and requiring coordinated multi-channel sampling. TagMic instead uses a fully analog architecture
with passive frequency modulation, removing the need for synchronization or digital logic and supporting scalable
deployment in multi-user environments.
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Despite the unique design tradeoffs of these systems, they all share a fundamental limitation: the self-interference
challenge inherent in conventional backscatter, where the tag’s reflective signal overlaps with the reader’s excitation
frequency [1, 13, 14, 17, 26, 28, 34, 35, 37, 53]. This overlap arises because the excitation signal is orders of magnitude
stronger than the weak backscattered reflection, significantly impairing signal demodulation. Although harmonic
backscatter [18, 48] offers one solution by reflecting at integer multiples of the excitation frequency, this approach
typically requires higher activation power for the nonlinear components, making it difficult to directly modulate
analog voice signals.

Table 1 provides a comparative summary of prior systems, highlighting TagMic’s distinctive integration of frequency
separation, analog modulation, and support for continuous, battery-free operation.

6.2 Non-Backscatter RF-based Sound Sensing

In addition to RF backscatter techniques, other RF techniques have been studied to detect sound or voice from human.
One popular approach is radar-based sound Sensing. Systems like RadioMic [20, 21], Radio2Speech [54], mmspy [3],
mmecho [11], RFMic-Phone [32], and others [7-9, 38—40, 43-45, 49] use mmWave radar to detect minute vibrations
caused by sound waves. They can offer capabilities like through-wall sensing [41] and noise resilience [23, 25],
sometimes combining radar with traditional microphones [32]. However, these sensing methods typically require
significantly more complex hardware and higher power consumption compared to RF backscatter tags [5, 20-23, 50—
52, 54]. Other than FMCW mmWave radar, UWB radar is another sensor used for sound sensing. Prior work like
UWHear [42] use UWB radar for audio separation, while RADIOSES [24] combines audio and RF modalities to
improve speech separation quality. These demonstrate sophisticated capabilities but also entail system complexity
and energy demands. While these alternative RF methods offer unique advantages (e.g., privacy, environmental
robustness), TagMic differs from them by providing a reliable, continuous voice streaming solution. This is because
this radar-based approach can only work in a controllable setting where the sound source is static and its location is
known a priori. In contrast, TagMic can work in a generic setting and for mobile voice sources.

7 Concluding Remarks

In this paper, we introduced a batteryless wireless microphone through the meticulous design of a backscatter
tag. Unlike traditional backscatter tags, our tag reflects radio signals at a frequency different from its excitation
signal, effectively addressing the notorious self-interference issue in conventional RF backscatter tags. By adopting
a dual-resonator structure, the tag modulates the voice signal onto its resonance frequency, eliminating the need
for digitalization and creating an energy-efficient voice FM system. We have fabricated TagMic and evaluated its
performance in realistic scenarios. Experimental results confirm its practicality and efficiency under various conditions.

While TagMic has demonstrated significant potential and reliable performance, it has several limitations that
warrant discussion: (i) Dependence on reader infrastructure. TagMic requires an excitation signal from a dedicated RF
reader. This dependency on custom infrastructure may limit plug-and-play deployment in environments that lack
compatible RF readers or regulated RF spectrum access. (ii) Limited communication range compared to active systems.
Although our system achieves up to 8 meters of communication distance, this range is shorter than conventional
battery-powered wireless microphones, which can operate over tens of meters with actively transmitted signals.
The reliance on passive backscatter inherently limits the available signal power and thus the effective range. (iii)
Scalability with large numbers of tags remains unexplored. While our system supports two concurrent tags through
frequency division, scalability to tens or hundreds of users has not been studied. In dense acoustic scenarios, ensuring
sufficient spectral separation and mitigating inter-tag interference may present additional challenges, particularly in
mobile or ad-hoc deployments. We envision that some of these limitations can be addressed through future advances
in low-power RF front-end design, integrated reader hardware, and adaptive signal processing pipelines. Overall,
TagMic should be regarded as a lab-validated prototype rather than a ready-to-deploy commercial system. While
our experiments demonstrate the feasibility of continuous, battery-free voice streaming, the current design has been
evaluated under controlled laboratory conditions with research-grade hardware. Additional engineering efforts, such
as developing dedicated low-cost RF readers, optimizing the hardware form factor, and compressing the Al model for
edge deployment, will be necessary before TagMic can transition from a prototype to practical real-world applications.
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