Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG

Project Information

Project Overview

Recent movement to open up radio access network (RAN) interfaces, led by the O-RAN Alliance, has introduced a new paradigm for future wireless networks. With its key features of openness and intelligence, O-RAN enables a "mix-and-match" approach to RAN development and deployment, allowing telecom carriers to select the best hardware and software from different vendors. Such openness also catalyzes the integration of machine learning (ML) based intelligence into the RAN and promises further performance improvement. This project aims to address several major challenges in O-RAN, with the objective of enhancing its performance, intelligence, and trustworthiness. Through innovation in wireless algorithm and protocol design, ML, and network security, this project expedites the evolution of O-RAN ecosystem. Moreover, the project promotes the participation of women and students with diverse backgrounds in wireless communications and computer science research while enhancing pedagogical activities through new course materials.

This project aims to enhance the performance, intelligence, and trustworthiness of O-RAN by tackling several fundamental challenges across its control loops of three different time scales. The project consists of three interconnected research thrusts. The first thrust focuses on real-time multi-user multi-input and multi-output (MU-MIMO) beamforming in O-RAN's distributed unit (O-DU). It develops a data-driven approach for beamforming that accounts for channel uncertainty. The second thrust focuses on the design of ML algorithms for MU-MIMO control within the near-RT RAN Intelligent Controller (RIC). It establishes an optimization-based framework to generate high-quality labeled datasets for training ML models. The third thrust aims to advance knowledge of the vulnerabilities of ML models in the non-RT RIC of O-RAN and develop safeguard solutions against data manipulation attacks.

The team at Michigan State University will focus on the second research thrust: designing data-driven approaches to enhance the performance of O-RANs. This includes, for example, the development of xAPPs in the Near-RT RIC.

Publications

Research Activities and Outcomes

Broader Impacts